Abstract:
The invention describes powders for use in the production of spatial structures, i.e. molded bodies, using layer build-up methods, as well as methods for their efficient production. The powders have the special feature that they have good flow behavior, for one thing, and at the same time, have such a composition that the molded body that can be produced with the powder, using rapid prototyping, has significantly improved mechanical and/or thermal properties. According to a particularly advantageous embodiment, the powder has a first component that is present in the form of essentially spherical powder particles, which is formed by a matrix material, and at least one further component in the form of stiffening and/or reinforcing fibers, which are preferably embedded in the matrix material.
Abstract:
Described are powders for use in the production of three-dimensional structures or molded bodies by means of layered manufacturing methods, and methods for the economical production thereof. The powders have the particularity that they have a good flow behavior, on the one hand, and that they are simultaneously configured such that the molded body produced with the powder in rapid prototyping has substantially improved mechanical and/or thermal characteristics. In accordance with a particularly advantageous embodiment, the powder comprises a first fraction that is present in the form of substantially spherical powder particles and that is formed by a matrix material, and at least one further fraction in the form of strengthening and/or reinforcing fibers that are preferably embedded into the matrix material.
Abstract:
Described are powders for use in the production of three-dimensional structures or molded bodies by means of layered manufacturing methods, and methods for the economical production thereof. The powders have the particularity that they have a good flow behavior, on the one hand, and that they are simultaneously configured such that the molded body produced with the powder in rapid prototyping has substantially improved mechanical and/or thermal characteristics. In accordance with a particularly advantageous embodiment, the powder comprises a first fraction that is present in the form of substantially spherical powder particles and that is formed by a matrix material, and at least one further fraction in the form of strengthening and/or reinforcing fibers that are preferably embedded into the matrix material.
Abstract:
The invention describes powders for use in the production of spatial structures, i.e. molded bodies, using layer build-up methods, as well as methods for their efficient production. The powders have the special feature that they have good flow behavior, for one thing, and at the same time, have such a composition that the molded body that can be produced with the powder, using rapid prototyping, has significantly improved mechanical and/or thermal properties. According to a particularly advantageous embodiment, the powder has a first component that is present in the form of essentially spherical powder particles, which is formed by a matrix material, and at least one further component in the form of stiffening and/or reinforcing fibers, which are preferably embedded in the matrix material.
Abstract:
The invention describes powders for use in the production of spatial structures, i.e. molded bodies, using layer build-up methods, as well as methods for their efficient production. The powders have the special feature that they have good flow behavior, for one thing, and at the same time, have such a composition that the molded body that can be produced with the powder, using rapid prototyping, has significantly improved mechanical and/or thermal properties. According to a particularly advantageous embodiment, the powder has a first component that is present in the form of essentially spherical powder particles, which is formed by a matrix material, and at least one further component in the form of stiffening and/or reinforcing fibers, which are preferably embedded in the matrix material.
Abstract:
The invention describes powders for use in the production of spatial structures, i.e. molded bodies, using layer build-up methods, as well as methods for their efficient production. The powders have the special feature that they have good flow behavior, for one thing, and at the same time, have such a composition that the molded body that can be produced with the powder, using rapid prototyping, has significantly improved mechanical and/or thermal properties. According to a particularly advantageous embodiment, the powder has a first component that is present in the form of essentially spherical powder particles, which is formed by a matrix material, and at least one further component in the form of stiffening and/or reinforcing fibers, which are preferably embedded in the matrix material.
Abstract:
A method of decoking (decarbonizing) surfaces of a cracking plant in which the cracking furnace is connected to a heat exchanger for cooling the cracked gas mixture, in which steam and air are admitted as a gas mixture to the cracking furnace and then the gas mixture is conducted through the cooler. The cooling medium is thus passed through the cracking gas cooler during the decoking operation while in a first stage the mixture is fed through the device at such a mass flow rate that the temperature of the deposits on the heat exchange surface is approximately at the temperature corresponding to cracking operations while, in a second stage, the gas flow rate is increased to raise the temperature of the deposits on the heat exchange surfaces of the cooler.
Abstract:
A methanol-synthesis reactor has a housing receiving a catalyst packing and coils of cooling tubes surrounding a core tube and disposed in helical radially spaced layers coaxial with the core tube. According to the invention, the internal diameters of the cooling tubes are from 4 to 50 mm, the distance between neighboring tubes in a direction transverse to the axis and the direction of fluid flow through the catalyst packing is between 2 and 20 times the smallest longitudinal dimension of the catalyst particles and the distance between neighboring tubes measured in the direction of the synthesis gas flow is less than 10 times the transverse distance.
Abstract:
A process for the recovery of carbon monoxide from a purge gas from acetic acid synthetic containing at least carbon monoxide, nitrogen and hydrogen, wherein the purge gas (6) containing at least carbon monoxide, nitrogen and hydrogen is separated into a gas fraction (11) rich in carbon monoxide and a residual gas fraction (12, 13) rich in nitrogen and hydrogen by an adsorption process (G), preferably by a pressure change absorption process, and the gas fraction (11) rich in carbon monoxide is returned upstream of the acetic acid.
Abstract:
A method and system for recording electronic documents through a data communication network while assuring that no duplicate “original” documents are in existence. The method and system includes creating an original electronic document that is to be recorded, such as a deed in a real estate transaction. The electronic document is stored on a source computer in an electronic file and, in one embodiment, transmitted to a recordation agency's computer over a data communication network for recordation. Upon submission of the document for recordation, the stored electronic document is designated as a “copy”. A file containing at least the original electronic document is then transmitted from the recordation agency to the source computer and stored thereon or transferred to another medium.