摘要:
There is provided a semiconductor light emitting device that minimizes reflection or absorption of emitted light, maximizes luminous efficiency with the maximum light emitting area, enables uniform current spreading with a small area electrode, and enables mass production with high reliability and high quality. A semiconductor light emitting device according to an aspect of the invention includes first and second conductivity type semiconductor layers, an active layer formed therebetween, first electrode layer, and a second electrode part electrically connecting the semiconductor layers. The second electrode part includes an electrode pad unit, an electrode extending unit, and an electrode connecting unit connecting the electrode pad unit and electrode extending unit.
摘要:
There is provided a semiconductor light emitting device that minimizes reflection or absorption of emitted light, maximizes luminous efficiency with the maximum light emitting area, enables uniform current spreading with a small area electrode, and enables mass production with high reliability and high quality. A semiconductor light emitting device according to an aspect of the invention includes first and second conductivity type semiconductor layers, an active layer formed therebetween, first electrode layer, and a second electrode part electrically connecting the semiconductor layers. The second electrode part includes an electrode pad unit, an electrode extending unit, and an electrode connecting unit connecting the electrode pad unit and electrode extending unit.
摘要:
There is provided a semiconductor light emitting device that minimizes reflection or absorption of emitted light, maximizes luminous efficiency with the maximum light emitting area, enables uniform current spreading with a small area electrode, and enables mass production with high reliability and high quality. A semiconductor light emitting device according to an aspect of the invention includes first and second conductivity type semiconductor layers, an active layer formed therebetween, first electrode layer, and a second electrode part electrically connecting the semiconductor layers. The second electrode part includes an electrode pad unit, an electrode extending unit, and an electrode connecting unit connecting the electrode pad unit and electrode extending unit.
摘要:
There is provided a semiconductor light emitting device that minimizes reflection or absorption of emitted light, maximizes luminous efficiency with the maximum light emitting area, enables uniform current spreading with a small area electrode, and enables mass production with high reliability and high quality. A semiconductor light emitting device according to an aspect of the invention includes first and second conductivity type semiconductor layers, an active layer formed therebetween, first electrode layer, and a second electrode part electrically connecting the semiconductor layers. The second electrode part includes an electrode pad unit, an electrode extending unit, and an electrode connecting unit connecting the electrode pad unit and electrode extending unit.
摘要:
There is provided a light emitting device that can minimize reflection or absorption of emitted light, maximize luminous efficiency with the maximum light emitting area, enable uniform current spreading with a small area electrode, and enable mass production at low cost with high reliability and high quality. A light emitting device according to an aspect of the invention includes a light emitting lamination including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer, and a conductive substrate at one surface thereof. Here, the light emitting device includes a barrier unit separating the light emitting lamination into a plurality of light emitting regions, a first electrode structure, and a second electrode structure. The first electrode structure includes a bonding unit, contact holes, and a wiring unit connecting the bonding unit to the contact holes.
摘要:
There is provided a light emitting device that can minimize reflection or absorption of emitted light, maximize luminous efficiency with the maximum light emitting area, enable uniform current spreading with a small area electrode, and enable mass production at low cost with high reliability and high quality. A light emitting device according to an aspect of the invention includes a light emitting lamination including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer, and a conductive substrate at one surface thereof. Here, the light emitting device includes a barrier unit separating the light emitting lamination into a plurality of light emitting regions, a first electrode structure, and a second electrode structure. The first electrode structure includes a bonding unit, contact holes, and a wiring unit connecting the bonding unit to the contact holes.
摘要:
There is provided a light emitting device that can minimize reflection or absorption of emitted light, maximize luminous efficiency with the maximum light emitting area, enable uniform current spreading with a small area electrode, and enable mass production at low cost with high reliability and high quality. A light emitting device according to an aspect of the invention includes a light emitting lamination including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer, and a conductive substrate at one surface thereof. Here, the light emitting device includes a barrier unit separating the light emitting lamination into a plurality of light emitting regions, a first electrode structure, and a second electrode structure. The first electrode structure includes a bonding unit, contact holes, and a wiring unit connecting the bonding unit to the contact holes.
摘要:
There is provided a light emitting device that can minimize reflection or absorption of emitted light, maximize luminous efficiency with the maximum light emitting area, enable uniform current spreading with a small area electrode, and enable mass production at low cost with high reliability and high quality. A light emitting device according to an aspect of the invention includes a light emitting lamination including a first conductivity type semiconductor layer, a second conductivity type semiconductor layer, and an active layer, and a conductive substrate at one surface thereof. Here, the light emitting device includes a barrier unit separating the light emitting lamination into a plurality of light emitting regions, a first electrode structure, and a second electrode structure. The first electrode structure includes a bonding unit, contact holes, and a wiring unit connecting the bonding unit to the contact holes.
摘要:
A method for selectively growing a nitride semiconductor, in which a mask is formed, with an opening formed therein, on a nitride semiconductor layer. A nitride semiconductor crystal is selectively grown on a portion of the nitride semiconductor layer exposed through the opening in the mask, the nitride semiconductor crystal shaped as a hexagonal pyramid and having crystal planes inclined with respect to a top surface of the nitride semiconductor. Here, the nitride semiconductor crystal has at least one intermediate stress-relieving area having crystal planes inclined at a greater angle than those of upper and lower areas of the nitride semiconductor crystal, the intermediate stress-relieving area relieving stress which occurs from continuity in the inclined crystal planes.
摘要:
A method for selectively growing a nitride semiconductor, in which a mask is formed, with an opening formed therein, on a nitride semiconductor layer. A nitride semiconductor crystal is selectively grown on a portion of the nitride semiconductor layer exposed through the opening in the mask, the nitride semiconductor crystal shaped as a hexagonal pyramid and having crystal planes inclined with respect to a top surface of the nitride semiconductor. Here, the nitride semiconductor crystal has at least one intermediate stress-relieving area having crystal planes inclined at a greater angle than those of upper and lower areas of the nitride semiconductor crystal, the intermediate stress-relieving area relieving stress which occurs from continuity in the inclined crystal planes.