Abstract:
Aspects of the present disclosure related to a method of phase extension using a delay circuit including delay devices coupled in series. The method includes receiving a clock signal, generating multiple delayed versions of the clock signal, wherein each of the delayed versions of the clock signal is delayed by a different number of the delay devices, and combining high phases or low phases of the delayed versions of the clock signal to obtain a combined clock signal.
Abstract:
Aspects of the disclosure are directed to adaptively delaying an input signal. In accordance with one aspect, an apparatus includes a plurality of delay units, wherein each of the plurality of delay units includes a substantially similar output load characteristic; a plurality of buffer units, wherein each of the plurality of buffer units is coupled to one of the plurality of delay units; wherein a quantity of the plurality of delay units equals a quantity of the plurality of buffer units; an additional delay unit coupled to a delay unit output of one of the plurality of delay units; and a one-hot decoder coupled to each of the plurality of buffer units, the one-hot decoder configured to enable one and only one of the plurality of buffer units.
Abstract:
Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
Abstract:
Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
Abstract:
Dynamic tag compare circuits employing P-type Field-Effect Transistor (PFET)-dominant evaluation circuits for reduced evaluation time, and thus increased circuit performance, are provided. A dynamic tag compare circuit may be used or provided as part of searchable memory, such as a register file or content-addressable memory (CAM), as non-limiting examples. The dynamic tag compare circuit includes one or more PFET-dominant evaluation circuits comprised of one or more PFETs used as logic to perform a compare logic function. The PFET-dominant evaluation circuits are configured to receive and compare input search data to a tag(s) (e.g., addresses or data) contained in a searchable memory to determine if the input search data is contained in the memory. The PFET-dominant evaluation circuits are configured to control the voltage/value on a dynamic node in the dynamic tag compare circuit based on the evaluation of whether the received input search data is contained in the searchable memory.
Abstract:
Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.
Abstract:
An apparatus, including: a clock gating circuit (CGC), including: a clock gating device configured to selectively gate/pass a selected clock signal based on an enable signal to generate an output clock signal; and a clock selection circuit configured to select a non-complementary clock signal or a complementary clock signal to generate the selected clock signal based on the output clock signal and the non-complementary clock signal or the complementary clock signal.
Abstract:
A high bandwidth register file circuit that significantly reduces the shared local read bitline RC delay to enable ultra-high performance PRFs with high port counts. In one example, the register file circuit includes read stack nfets in a multiplexer circuit instead of the memory cell causing the local read bitline RC to be independent of the number of read and write ports of the memory cell.
Abstract:
P-type Field-effect Transistor (PFET)-based sense amplifiers for reading PFET pass-gate memory bit cells (“bit cells”). Related methods and systems are also disclosed. Sense amplifiers are provided in a memory system to sense bit line voltage(s) of the bit cells for reading the data stored in the bit cells. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type Field-effect Transistor (NFET) drive current due for like-dimensioned FETs. In this regard, in one aspect, PFET-based sense amplifiers are provided in a memory system to increase memory read times to the bit cells, and thus improve memory read performance.
Abstract:
Read-assist circuits for memory bit cells employing a P-type Field-Effect Transistor (PFET) read port(s) are disclosed. Related memory systems and methods are also disclosed. It has been observed that as node technology is scaled down in size, PFET drive current (i.e., drive strength) exceeds N-type FET (NFET) drive current for like-dimensioned FETs. In this regard, in one aspect, it is desired to provide memory bit cells having PFET read ports, as opposed to NFET read ports, to increase memory read times to the memory bit cells, and thus improve memory read performance. To mitigate or avoid a read disturb condition that could otherwise occur when reading the memory bit cell, read-assist circuits are provided for memory bit cells having PFET read ports.