Abstract:
Apparatuses and methods for correcting a distorted signal at a receiver device during wireless local area network (WLAN) communications are disclosed. The apparatuses and methods include receiving, by a receiver device in a WLAN, a distorted signal corresponding to a data packet signal transmitted from a transmitter device, receiving, by the receiver device, one or more transmitter parameters corresponding to the transmission of the data packet signal, the one or more transmitter parameters including information to adjust the distorted signal, and adjusting, by the receiver device, the distorted signal to reconstruct the data packet signal based at least on the one or more transmitter parameters.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for extending range and delay spread in 2.4 and 5 GHz bands, and potentially frequency multiplexing users. An apparatus is provided for wireless communications. The apparatus generally includes a processing system configured to generate a packet comprising a first preamble decodable by a first type of device and a second type of device, a second preamble that is decodable by the second type of device, but not the first type of device, and data and a transmitter configured to transmit the packet, wherein the first preamble is transmitted using a first channel bandwidth and the second preamble and data are transmitted using only a portion of the first channel bandwidth.
Abstract:
Certain aspects of the present disclosure relate to techniques for constructing a VHT-SIG field of a transmission preamble in a manner that may reduce peak-to-average power ratio (PAPR) of the transmission.
Abstract:
A method and system are disclosed that allow for the control of transmission characteristics associated with an exchange of protocol data units (PDUs) between a first wireless device and a second wireless device. The first wireless device determines a number of transmission conditions that may include, for example, a maximum duration of time that the first wireless device can spend receiving or transmitting each PDU. The first wireless device embeds the transmission conditions into a frame, and transmits the frame to the second wireless device. The second wireless device may selectively modify a size of the PDUs in response to the maximum duration of time so that the first wireless device can receive each of the PDUs in less than the maximum duration of time.
Abstract:
This disclosure provides methods, devices and systems for wireless communication, and particularly, methods, devices and systems for including signaling regarding enhanced features of new wireless communication protocols. The signaling may be included in various portions of a physical layer preamble of a wireless transmission. In some implementations, the physical layer preamble may be used to indicate puncturing of subbands or content channels that may carry further signaling in accordance with preamble signaling designs of this disclosure. The physical layer preamble signaling be parallelized for different subchannels of a wireless channel that consists of multiple subchannels. Some implementations of the physical layer preambles may be used to multiplex different types of wireless local area network communications into different subsets of the plurality of subchannels of the wireless channel.
Abstract:
Certain aspects of the present disclosure provide techniques and apparatus for duty cycle determination for radio frequency (RF) exposure evaluation. A method of wireless communication by a wireless device includes determining a duty cycle associated with a transmission scenario based at least in part on a past duty cycle associated with the transmission scenario; and transmitting a signal at a transmit power determined based at least in part on the duty cycle and an RF exposure limit.
Abstract:
This disclosure provides systems, methods, and apparatuses for wireless communication. An example apparatus selects a resource unit (RU) for a physical (PHY) layer convergence protocol (PLCP) protocol data unit (PPDU). The selected RU includes a set of contiguous tones spanning a bandwidth. The apparatus maps the set of contiguous tones to a set of non-contiguous tones distributed across the frequency spectrum, and transmits the PPDU over the set of non-contiguous tones. Another example apparatus selects an RU of a group of RUs that collectively span a frequency spectrum, and formats a PPDU based on a first frequency bandwidth wider than the selected RU's bandwidth. The apparatus parses the contiguous tones of the selected RU to a set of non-contiguous tones spanning a unique segment of a second frequency bandwidth wider than the first frequency bandwidth, and schedules a transmission of the PPDU over the set of non-contiguous tones.
Abstract:
This disclosure provides systems, methods and apparatuses for wireless communications. In some implementations, a first wireless communication device associated with a basic service set (BSS) receives a plurality of packets transmitted during a measurement window by a second wireless communication device associated with the BSS. The first wireless communication device determines a received signal strength indicator (RSSI) value of the plurality of received packets, determines a level of overlapping basic service set (OBSS) interference on the wireless medium during the measurement window, and adjusts one or more of a packet detect (PD) threshold, an OBSS PD threshold, or an energy detect (ED) threshold based on the determined RSSI value and the level of OBSS interference.
Abstract:
This disclosure provides methods, devices and systems for acknowledgement and retransmission, and more specifically, to methods, devices and systems that enable a secondary wireless channel to provide acknowledgements of data transmitted on a primary wireless channel concurrently with the reception of additional data on the primary wireless channel. In some implementations, a transmitting device may transmit wireless packets including multiple codewords to a receiving device via a first wireless channel. The receiving device may attempt to decode the received codewords based on primary information in the codewords. The receiving device may then transmit to the transmitting device, via a second wireless channel, a codeword acknowledgement that identifies codewords that the receiving device did not successfully decode. The transmitting device may then transmit parity information to the receiving device via the first wireless channel that aids the receiving device in decoding the identified codewords.
Abstract:
Certain aspects of the present disclosure provide an apparatus for wireless communication. The apparatus generally includes an interface configured to obtain at least one voice packet from an access point (AP), wherein the at least one voice packet is obtained during one or more service periods (SPs) of a target wake time (TWT) protocol, and a processing system configured to process the at least one voice packet obtained during the one or more SPs.