Abstract:
Techniques and apparatus for controlling the transmit power of an uplink (UL) signal from a user terminal in a wireless communications system in an effort to achieve some target characteristic, such as a target carrier-to-interference (C/I) ratio, at an access point (AP) are provided. In this manner, such a user terminal may help avoid or compensate for imbalances in received radio frequency (RF) power between UL signals received from multiple user terminals by the AP. For example, the transmit power at each user terminal may be controlled in an effort to achieve a target post-processing C/I ratio of 28 dB per spatial stream in an effort to reduce large power imbalances and optimize throughput per user terminal. The user terminal and the AP may compose part of a multiple-input multiple-output (MIMO) communication system utilizing spatial-division multiple access (SDMA) techniques.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for encoding data for wireless transmissions. In one aspect, a wireless device may encode a number (M) of systematic bits for transmission to a receiving device. The systematic bits may be encoded using a low-density parity-check (LDPC) code to produce an LDPC codeword. The LDPC codeword may include a number (N) of codeword bits, including the M systematic bits and one or more parity bits. The wireless device may further puncture a number (K) of the codeword bits to produce a punctured codeword having a code rate M/(N−K)>5/6. The wireless device may transmit the N−K remaining codeword bits, over a wireless channel, to a receiving device.
Abstract:
Certain aspects of the present disclosure relate to techniques for constructing a VHT-SIG field of a transmission preamble in a manner that may reduce peak-to-average power ratio (PAPR) of the transmission.
Abstract:
This disclosure provides methods, devices and systems for encoding data for wireless communication to achieve a desired amplitude distribution. Some implementations more specifically relate to performing an encoding operation to shape the amplitudes of the resultant symbols such that the amplitudes have a non-uniform distribution. In some implementations of the non-uniform distribution, the probabilities associated with the respective amplitudes generally increase with decreasing amplitude. Some implementations enable the tracking of MPDU boundaries to facilitate successful decoding by a receiving device. Additionally or alternatively, some implementations enable the determination of a packet length after performing the amplitude shaping, which enables a transmitting device to determine the number of padding bits to add to the payload and to signal the packet length to a receiving device so that the receiving device may determine the duration of the packet.
Abstract:
Apparatuses and methods for correcting a distorted signal at a receiver device during wireless local area network (WLAN) communications are disclosed. The apparatuses and methods include receiving, by a receiver device in a WLAN, a distorted signal corresponding to a data packet signal transmitted from a transmitter device, receiving, by the receiver device, one or more transmitter parameters corresponding to the transmission of the data packet signal, the one or more transmitter parameters including information to adjust the distorted signal, and adjusting, by the receiver device, the distorted signal to reconstruct the data packet signal based at least on the one or more transmitter parameters.
Abstract:
This disclosure describes techniques for operating a client device to communicate with a wireless access point to validate data within a frame by comparing channel quality metrics and duration metrics to thresholds. Information received within a validity window may be treated as correctly received even if the frame fails a subsequent verification process or if reception of the frame is terminated prior to the end of the frame.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for extending range and delay spread in 2.4 and 5 GHz bands, and potentially frequency multiplexing users. An apparatus is provided for wireless communications. The apparatus generally includes a processing system configured to generate a packet comprising a first preamble decodable by a first type of device and a second type of device, a second preamble that is decodable by the second type of device, but not the first type of device, and data and a transmitter configured to transmit the packet, wherein the first preamble is transmitted using a first channel bandwidth and the second preamble and data are transmitted using only a portion of the first channel bandwidth.
Abstract:
This disclosure provides methods, components, devices and systems for extended long range wireless packet design. Some aspects more specifically relate to increasing a data rate, a coverage range, or both for extended long range (ELR) wireless communications systems by updating an ELR wireless packet design. A wireless communications device, such as a wireless station (STA), may transmit an ELR wireless packet to another wireless communications device, such as a wireless access point (AP), with updated preamble fields, boosted transmit power for one or more preamble fields, and/or additional repetitions for one or more preamble fields. Additionally, or alternatively, the wireless communications device may transmit an ELR wireless packet using a narrow bandwidth to increase coverage range for an ELR wireless communications system.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. For example, a wireless communication device (WCD), may include multiple component chips configurable to work together as a partitioned chip having a capability to communicate using a quantity of spatial streams that exceeds a capacity of any one of the multiple component chips when operated independently. Some aspects more specifically relate to component chips having frequency domain components that support a first quantity of spatial streams in a frequency domain and having time domain components that support a second quantity of spatial streams in a time domain. In some examples, the first quantity of spatial streams may correspond to a quantity of spatial streams that are transmitted or received by multiple component chips, and the second quantity of spatial streams may correspond to a quantity of spatial streams that are transmitted or received by a single component chip.
Abstract:
Certain aspects of the present disclosure provide a method for wireless communications at a first wireless node generally including generating a first frame associated with a timestamp, outputting the first frame, for transmission to a second wireless node, as part of a ranging procedure, and outputting, for transmission, signaling comprising information regarding a transmit impulse response of the first frame.