摘要:
The present invention is directed to a harvester of influenza virus from fertilized chicken eggs in a continuous manner comprising a control panel, a connector having three openings, a pipette, a peristaltic pump, and a sample reservoir. In another embodiment, the harvester comprises a pipette gun having a retrieving button and an aspiration button instead of the control panel. The present invention is also directed to a method of harvesting the influenza virus using the pipette gun.
摘要:
Methods and compositions for the optimization and production of influenza viruses, e.g., ca influenza B strains, in eggs and host cells suitable as influenza vaccines are provided.
摘要:
Methods and compositions for the optimization and production of influenza viruses, e.g., ca influenza B strains, in eggs and host cells suitable as influenza vaccines are provided.
摘要:
Methods and compositions for the optimization and production of influenza viruses, e.g., ca influenza B strains, in eggs and host cells suitable as influenza vaccines are provided.
摘要:
Methods and compositions for the optimization and production of influenza viruses, e.g., ca influenza B strains, in eggs and host cells suitable as influenza vaccines are provided.
摘要:
The present invention relates to novel MDCK cells which can be to grow viruses, e.g., influenza viruses, in cell culture to higher titer than previously possible. The MDCK cells can be adapted to serum-free culture medium. The present invention further relates to cell culture compositions comprising the MDCK cells and cultivation methods for growing the MDCK cells. The present invention further relates to methods for producing influenza viruses in cell culture using the MDCK cells of the invention.
摘要:
The present invention provides novel MDCK-derived adherent non-tumorigenic cell lines that can be grown in the presence or absence of serum. The cell lines of the present invention are useful for the production of vaccine material (e.g., viruses). More specifically, the cell lines of the present invention are useful for the production of influenza viruses in general and ca/ts influenza viruses in particular. The invention further provides methods and media formulations for the adaptation and cultivation of MDCK cells such that they remain non-tumorigenic. Additionally, the present invention provides methods for the production of vaccine material (e.g., influenza virus) in the novel cell lines of the invention.
摘要:
An endotracheal intubation device 10 is disclosed. The endotracheal intubation device 10 includes a stylet 100, an elongate rod 300 mounted within the stylet 100 and adapted to deform/curve the stylet 100 as well as an endotracheal tube 400 mounted thereto by contacting an inner wall of the endotracheal tube 400 via a slot 130 through which the rod 300 bows outwardly, and a handle 200 mounted to the stylet 100 and adapted to actuate the elongate rod 300 to deform/curve the stylet 100. The endotracheal intubation device 10 can be used on a patient by a medical professional to access the patient's trachea by inserting the endotracheal tube 400 into the patient. Upon insertion, the handle 200 is actuated to deform the stylet 100.
摘要:
The present invention provides novel MDCK-derived adherent non-tumorigenic cell lines that can be grown in the presence or absence of serum. The cell lines of the present invention are useful for the production of vaccine material (e.g., viruses). More specifically, the cell lines of the present invention are useful for the production of influenza viruses in general and ca/ts influenza viruses in particular. The invention further provides methods and media formulations for the adaptation and cultivation of MDCK cells such that they remain non-tumorigenic. Additionally, the present invention provides methods for the production of vaccine material (e.g., influenza virus) in the novel cell lines of the invention.
摘要:
The disclosure generally relates to an endotracheal intubation device 100 including a channel element 120 that defines a first channel 122 and additional retaining structure that defines a second channel 140. The device 100 is reversibly movable between a first relaxed position A (e.g., a generally extended or straight position) and a second curved position B (e.g., an articulated, generally non-linear position) with an articulating means 160. An endotracheal tube 200 can be inserted into the second channel 140, and the intubation device 100 then can be used to intubate a patient P according to a disclosed intubation method.