摘要:
A memristor having an active region includes a first electrode. The first electrode comprises a nanostructure formed of at least one metallic single walled nanotube. The memristor also includes a second electrode formed of at least one metallic single walled nanotube. The second electrode is positioned in a crossed relationship with respect to the first electrode. The memristor further includes a switching material positioned between the first electrode and the second electrode, in which the active region is configured to form in the switching material at a cross point of the first electrode and the second electrode.
摘要:
A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.
摘要:
A structure for surface enhanced Raman spectroscopy is disclosed herein. The structure is made up of a substrate, a self-assembled layer of first metal particles established on the substrate, and a self-assembled layer of second metal particles established such that the second metal particles are positioned at interstitial spaces between the first metal particles. The first metal particles have a first predetermined diameter, and the second metal particles have a second predetermined diameter that is smaller than the first predetermined diameter.
摘要:
A memristor having an active region includes a first electrode. The first electrode comprises a nanostructure formed of at least one metallic single walled nanotube. The memristor also includes a second electrode formed of at least one metallic single walled nanotube. The second electrode is positioned in a crossed relationship with respect to the first electrode. The memristor further includes a switching material positioned between the first electrode and the second electrode, in which the active region is configured to form in the switching material at a cross point of the first electrode and the second electrode.
摘要:
Embodiments of the present invention are directed to systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy includes a waveguide layer (102,402,702,902) configured with at least one array of features, and a material (110,410,710,910) disposed on at least a portion of the features. Each array of features and the waveguide layer are configured to provide guided-mode resonance for at least one wavelength of electromagnetic radiation. The electromagnetic radiation produces enhanced Raman scattered light from analyte molecules located on or in proximity to the material.
摘要:
Embodiments of the present invention are directed to systems for performing surface-enhanced Raman spectroscopy. In one embodiment, a system for performing Raman spectroscopy includes a waveguide layer configured with at least one array of features, and a material disposed on at least a portion of the features. Each array of features and the waveguide layer are configured to provide guided-mode resonance for at least one wavelength of electromagnetic radiation. The electromagnetic radiation produces enhanced Raman scattered light from analyte molecules located on or in proximity to the material.
摘要:
A structure for surface enhanced Raman spectroscopy is disclosed herein. The structure is made up of a substrate, a self-assembled layer of first metal particles established on the substrate, and a self-assembled layer of second metal particles established such that the second metal particles are positioned at interstitial spaces between the first metal particles. The first metal particles have a first predetermined diameter, and the second metal particles have a second predetermined diameter that is smaller than the first predetermined diameter.
摘要:
A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.
摘要:
Systems, methods, and apparatus for providing a fluid and reduced-toxicity optical media with optical analysis and therapeutic energy delivery. An aspect of the invention provides an aqueous solution of increased-salinity of between about 1% and 35%. An increasing salinity in accordance with the invention provides improved transmissive efficiency at many wavelengths and less toxicity than many existing systems and methods. A catheter having integrated fibers for probing or treating internal lumens or other tissues can include a liquid-inflatable balloon or flushing mechanism using the solution for displacing blood or other obstructions in an optical path between the fiber and targeted tissue. Methods including spectroscopy can be employed with the solution for diagnosing medical conditions associated with diseased vessels or other tissues while reducing the risk of permanent damage resulting from the diagnosis. Additional applications include the deliver of therapeutic radiation externally and internally to tissues through h the solution media.