Abstract:
A method controls a motor vehicle equipped with autonomous driving structure, sensors, fusion circuitry, and a road navigation assistance device. The method includes: determining a first value when the estimated trajectory of the vehicle intersects or approaches the central line of a traffic lane, determining a second value when the closest target object on the vehicle's driving line is also detected by a telemetry sensor, determining a third value when a collision will occur by comparing the distance between the closest target object and the vehicle to a predetermined threshold, determining a fourth value when the space between the vehicle and the closest target object is empty based on data from the telemetry sensor, and determining a fifth value when there is congestion on the trajectory of the vehicle, and then determining whether the autonomous driving structure can be activated based on only the first to fifth values.
Abstract:
A method for managing the longitudinal speed of a first vehicle includes: detecting vehicles in traffic surrounding the first vehicle, including detecting at least one vehicle in front of the first vehicle and at least one vehicle behind the first vehicle; calculating reference speeds, including calculating at least one first reference speed depending on the at least one vehicle in front of the first vehicle and calculating at least one second reference speed depending on the at least one vehicle behind the first vehicle; calculating a maximum speed setpoint depending on the first reference speed; calculating a minimum speed setpoint depending on the second reference speed; calculating a speed setpoint of the first vehicle, the speed setpoint of the first vehicle being less than or equal to the maximum speed setpoint and greater than or equal to the minimum speed setpoint.
Abstract:
A method for estimating the speed of a motor vehicle includes defining a first speed threshold that corresponds to a minimum speed value supplied by a vehicle wheel angular speed sensor, defining a second speed threshold that is greater than the first, estimating low speed values when the vehicle is running below the first speed threshold by using an estimation method of adaptive filtered type, measuring high speed values when the vehicle is running above the second speed threshold by using vehicle speed values supplied by the wheel angular speed sensor, and in the intermediate zone between the first and second speed thresholds, mixing high speed with low speed.
Abstract:
A method estimates a weight of a motor vehicle including front and rear wheel assemblies, using a smart communication device, after loading of the vehicle. The method includes identifying the vehicle in the smart communication device, using a camera of the smart communication device to capture and process a photograph of at least one wheel with at least one point of the vehicle brought to sink down jointly upon the loading of the vehicle with a suspension of the wheel of the vehicle, determining a clearance of the wheel assembly opposite the photographed wheel, calculating a load value on the wheel assembly of the photographed wheel and a load value on the opposite wheel assembly as a function of the respective clearances of these wheel assemblies, to determine a total load value, and using the smart communication device to inform a user of a load state of the vehicle.
Abstract:
A method for estimating the speed of a motor vehicle includes defining a first speed threshold that corresponds to a minimum speed value supplied by a vehicle wheel angular speed sensor, defining a second speed threshold that is greater than the first, estimating low speed values when the vehicle is running below the first speed threshold by using an estimation method of adaptive filtered type, measuring high speed values when the vehicle is running above the second speed threshold by using vehicle speed values supplied by the wheel angular speed sensor, and in the intermediate zone between the first and second speed thresholds, mixing high speed with low speed.
Abstract:
A method for automated management of the longitudinal speed of a first vehicle travelling on a first lane includes: detecting an intention of a second vehicle travelling on a second lane adjacent to the first lane to perform an insertion maneuver on the first lane; estimating a corrected longitudinal distance, the corrected longitudinal distance corresponding to the longitudinal distance that will separate the first vehicle from the second vehicle at the end of the insertion maneuver, the corrected longitudinal distance being calculated as a function of a measured longitudinal distance between the first vehicle and the second vehicle, and as a function of a relative longitudinal speed measured between the second vehicle and the first vehicle; and calculating a longitudinal speed setpoint of the first vehicle as a function of the corrected longitudinal distance.
Abstract:
A method for determining a movement vector of a motor vehicle includes: determining, via a radar system of the vehicle, at two successive instants, positions, relative to the vehicle, of elements of an environment of the vehicle that are static relative to the environment, associating the positions determined at these two successive instants with each other in such a way as to form different pairs of positions each grouping together the preceding position and the subsequent position of a given element of the environment, and determining the movement vector of the vehicle by linear regression, based on the pairs of positions thus formed.
Abstract:
A method and device detect the imbalance of a vehicle wheel. The method includes measuring a rotation speed of the wheel while the vehicle is moving, and calculating a filtered value by applying at least one step of band-pass filtering to the measured rotation speed value of the wheel. A position of a pass-band of the band-pass filtering step is offset while moving as a function of the rotation speed of the wheel.
Abstract:
Method for detecting traffic congestion using a motor vehicle radar system, comprising multi-beam radar sensors (21-24) in the rear and front corners of the vehicle, the method comprising the steps of: dividing the radar sensors (Df_l, Df_r, Dr_l, Dr_r) into four angular sectors (Zfront, Zrear, Zleft, Zright) extending to the front, to the rear, to the right and to the left of the vehicle respectively, selecting for each angular sector, from the beams for which no target is detected, the (Dfront, Drear, Dleft, Dright) beam having the shortest reach distance, detecting the amplitude of reflected beams corresponding respectively to the selected beams, and—analysing the period during which the amplitude of the reflected beams is maintained relative to a predefined time threshold for each angular sector respectively, the method detecting a traffic congestion situation when the analysing step determines simultaneously for the four angular sectors that the period during which the amplitude of the reflected beams is maintained is greater than or equal to the predefined time threshold.
Abstract:
A method for a motor vehicle to select a preferred traffic lane to access a toll area having a plurality of traffic lanes includes the following: a) detecting traffic lanes of the toll area, b) determining, for at least some of the traffic lanes, a first item of data relating to the distance between the motor vehicle and the corresponding traffic lane, and a second item of data relating to the number of other vehicles situated on the corresponding traffic lane, c) minimizing a cost function that depends on each first item of data and on each second item of data, so as to identify the preferred traffic lane, and d) determining the possibility or the risk for the motor vehicle of changing traffic lane in order to move towards the preferred traffic lane.