Abstract:
A low reflectance film with a second reflectance (50% or lower) lower than a first reflectance is formed between an optical directional coupler and a first-layer wiring with the first reflectance. Thus, even when the first-layer wiring is formed above the optical directional coupler, the influence of the light reflected by the first-layer wiring on the optical signal propagating through the first optical waveguide and the second optical waveguide of the optical directional coupler can be reduced. Accordingly, the first-layer wiring can be arranged above the optical directional coupler, and the restriction on the layout of the first-layer wiring is relaxed.
Abstract:
A semiconductor device is provided with an insulating layer formed on a base substrate, an optical waveguide composed of a semiconductor layer formed on the insulating layer, and an insulating film formed along an upper surface of the insulating layer and a front surface of the optical waveguide. A peripheral edge portion of a lower surface of the optical waveguide is separated from the insulating layer, and the insulating film is buried between the peripheral edge portion and the insulating layer.
Abstract:
A low reflectance film with a second reflectance (50% or lower) lower than a first reflectance is formed between an optical directional coupler and a first-layer wiring with the first reflectance. Thus, even when the first-layer wiring is formed above the optical directional coupler, the influence of the light reflected by the first-layer wiring on the optical signal propagating through the first optical waveguide and the second optical waveguide of the optical directional coupler can be reduced. Accordingly, the first-layer wiring can be arranged above the optical directional coupler, and the restriction on the layout of the first-layer wiring is relaxed.
Abstract:
In a semiconductor device connected to a first optical waveguide, a phase modulation unit, and a second optical waveguide in this order and having an optical modulator guiding light in a first direction, the phase modulation unit includes: a semiconductor layer whose length in the first direction is larger than a width in a second direction orthogonal to the first direction and which is made of monocrystalline silicon; a core part serving as an optical waveguide region formed on the semiconductor layer, and extending in the first direction; a pair of slab parts arranged on both sides of the core part in the second direction; a first electrode coupled with one of the slab parts; and a second electrode coupled with the other of the slab parts. The core part has a p type semiconductor region and an n type semiconductor region extending in the first direction, and the second direction coincides with a crystal orientation of the semiconductor layer.
Abstract:
Disclosed is an optical semiconductor device which can be improved in light shift precision and restrained from undergoing a loss in light transmission. In this device, an inner side-surface of a first optical coupling portion of an optical coupling region and an inner side-surface of a second optical coupling portion of the region are increased in line edge roughness. This manner makes light coupling ease from a first to second optical waveguide. By contrast, the following are decreased in line edge roughness: an outer side-surface of the first optical coupling portion of the optical coupling region; an outer side-surface of the second optical coupling portion of the region; two opposed side-surfaces of a portion of the first optical waveguide, the portion being any portion other than the region; and two opposed side-surfaces of a portion of the second optical waveguide, the portion being any portion other than the region.
Abstract:
Disclosed is an optical semiconductor device which can be improved in light shift precision and restrained from undergoing a loss in light transmission. In this device, an inner side-surface of a first optical coupling portion of an optical coupling region and an inner side-surface of a second optical coupling portion of the region are increased in line edge roughness. This manner makes light coupling ease from a first to second optical waveguide. By contrast, the following are decreased in line edge roughness: an outer side-surface of the first optical coupling portion of the optical coupling region; an outer side-surface of the second optical coupling portion of the region; two opposed side-surfaces of a portion of the first optical waveguide, the portion being any portion other than the region; and two opposed side-surfaces of a portion of the second optical waveguide, the portion being any portion other than the region.
Abstract:
A technique is provided which can prevent the quality of an electrical signal from degrading in an optical semiconductor device.In a cross-section perpendicular to an extending direction of an electrical signal transmission line, the electrical signal transmission line is surrounded by a shielding portion including a first noise cut wiring, second plugs, a first layer wiring, first plugs, a shielding semiconductor layer, first plugs, a first layer wiring, second plugs, and a second noise cut wiring, and the shielding portion is fixed to a reference potential. Thereby, the shielding portion blocks noise due to effects of a magnetic field or an electric field from the semiconductor substrate, which affects the electrical signal transmission line.
Abstract:
A technique is provided which can prevent the quality of an electrical signal from degrading in an optical semiconductor device.In a cross-section perpendicular to an extending direction of an electrical signal transmission line, the electrical signal transmission line is surrounded by a shielding portion including a first noise cut wiring, second plugs, a first layer wiring, first plugs, a shielding semiconductor layer, first plugs, a first layer wiring, second plugs, and a second noise cut wiring, and the shielding portion is fixed to a reference potential. Thereby, the shielding portion blocks noise due to effects of a magnetic field or an electric field from the semiconductor substrate, which affects the electrical signal transmission line.