Abstract:
The present invention is directed to a process for making silver nanostructures, comprising reacting at least one polyol and at least one silver compound that is capable of producing silver metal when reduced, in the presence of a source of chloride or bromide ions, at least one copolymer, and at least one acid scavenger. The present invention is also directed to silver nanostructures made by the processes described herein.
Abstract:
A polymer film containing a mixture of (a) at least one electrically conductive polymer, and (b) at least one organic salt having a melting point of greater than 100 C is made by forming a layer of a polymer composition that contains (a) a liquid carrier comprising water and at least one water miscible polar organic liquid, (b) the at least one electrically conductive polymer dissolved or dispersed in the liquid carrier, and (c) the at least one organic salt having a melting point of greater than 100 C dissolved in the liquid carrier, and (2) removing the liquid carrier from the layer. The polymer film is useful as a layer in a laminar electronic device.
Abstract:
Described herein are polymer films, polymer gels, and polymer foams each containing electrically conductive polymers and salts comprising sulfonylimide anions. The polymer films, polymer gels, and polymer foams are each useful as components of electronic devices.
Abstract:
A polymer film, polymer gel, and polymer foam each contain an electrically conductive polymer and an ionic liquid and are each useful as a component of an electronic device.
Abstract:
A process for making silver nanostructures, which includes the step of reacting at least one polyol and at least one silver compound that is capable of producing silver metal when reduced, in the presence of: (a) a source of chloride or bromide ions, and (b) at least one copolymer that comprises: (i) one or more first constitutional repeating units that each independently comprise at least one pendant saturated or unsaturated, five-, six-, or seven-membered, acylamino- or diacylamino-containing heterocylic ring moiety per constitutional repeating unit, and (ii) one or more second constitutional repeating units, each of which independently differs from the one or more first nonionic constitutional repeating units, and has a molecular weight of greater than or equal to about 500 grams per mole, is described herein.
Abstract:
A process for making silver nanostructures, which includes the step of reacting at least one polyol and at least one silver compound that is capable of producing silver metal when reduced, in the presence of: (a) a source of chloride or bromide ions, and (b) at least one copolymer that comprises: (i) one or more first constitutional repeating units that each independently comprise at least one pendant saturated or unsaturated, five-, six-, or seven-membered, acylamino- or diacylamino-containing heterocylic ring moiety per constitutional repeating unit, and (ii) one or more second constitutional repeating units, each of which independently differs from the one or more first nonionic constitutional repeating units, and has a molecular weight of greater than or equal to about 500 grams per mole, is described herein.