Abstract:
The present invention relates to a method of preparation of a garnet-type inorganic material. It also relates to the garnet-type inorganic material itself. The process comprises the following steps: (1) bringing an aqueous solution S comprising (i) a salt of zirconium, (ii) a salt of lanthanum and (iii) a salt of the element A or a precursor of an oxide of element A into contact with an aqueous solution of a basic compound, as a result of which a precipitate suspended in the reaction medium is obtained; (2) stirring the reaction medium obtained at the end of step (1) for at least 30 min; (3) bringing the precipitate obtained at the end of step (2) into contact with an additive selected in the group consisting of: anionic surfactants; nonionic surfactants; polyethylene glycols; carboxylic acids and their salts; and surfactants of the carboxymethylated fatty alcohol ethoxylate type; (4) calcining in air the precipitate recovered at the end of the previous step at a temperature which is at least 400° C.; (5) bringing into contact the product obtained at the end of step (4) with a salt of lithium; (6) calcining in air the product obtained at the end of step (5) at a temperature between 700° C. and 1100° C.; 20 the inorganic compound M comprising or consisting essentially of a garnet oxide or garnet-type oxide containing, as constituent elements, the elements Li, La, Zr and at least one element A selected in the group consisting of Al, Ga, Nb, Fe, W, Ta, or a mixture thereof.
Abstract:
A modified phosphor is described comprising phosphor particles and at least one amphiphilic agent. Compositions comprising the modified phosphor and at least one polymer are also described.
Abstract:
The silicate of magnesium and of barium, strontium or calcium of the invention is characterized in that it is in the form of a suspension of solid crystallized particles in a liquid phase, said particles having a mean size between 0.1 μm and 1 μm. It is prepared by spray-drying a liquid mixture comprising compounds of magnesium, of silicium and of at least one first element chosen from barium, strontium and calcium, by submitting the dried mixture to a first calcination in air and to a second calcination in a reducing atmosphere and by wet milling the calcined mixture.
Abstract:
The present invention relates to a process for preparing an ammonium vanadium phosphate of formula (NH4)(VO2)(HPO4). It also relates to a process for preparing a vanadium orthophosphate VPO4.
Abstract:
The invention relates to a cosmetic photoprotection composition comprising particles of cerium oxide functionalised with polyacrylic acid, in combination with particles of titanium oxide or zinc oxide.
Abstract:
The invention relates to an NVPF-based composition and the use thereof in the field of batteries as an electrochemically active material. The invention also relates to a conductive composition comprising said composition as well as to a method for obtaining said composition.
Abstract:
The compound according to the invention is a compound of formula (1) Ax W1-yMOyO3, wherein A is chosen from the group comprising the Li, Na, NH4, K and H cations, and it is characterised in that x and y verify the relationships 0≦x≦1 and 0≦y≦0.5, and in that it has a crystalline structure of the hexagonal type with a base of WO6 octahedra, said structure having tunnels delimited by 6, 4 and 3 of said octahedra and oriented along the axis c.
Abstract:
The present invention relates to the new process of preparation of a Li-rich layered oxide based on Mn and optionally on Ni and/or Co in which F is incorporated within the crystal of the oxide (or “fluorinated oxide”). It also relates to the new fluorinated oxide its use as a component in a cathode of a battery.
Abstract:
Disclosed is a composition comprising at least a cerium and zirconium based mixed oxide comprising zirconium, cerium, lanthanum and optionally at least one rare earth other than cerium and lanthanum; said mixed oxide exhibiting a high thermal resistance and are in particular capable of maintaining a large specific surface area even in a high temperature environment. Also disclosed is a process for the synthesis of such compositions.