Abstract:
The invention relates to a method for managing a battery comprising a plurality of battery cells, wherein a maximum value of a current that can be delivered by the battery is adjusted on the basis of a frequency distribution (44) of a root mean square current delivered by the battery. The invention further relates to a battery management system and a computer program for carrying out said method as well as to a motor vehicle comprising a battery which includes a battery management system of said type.
Abstract:
The invention relates to a battery unit (10) for use on an on-board power system (50) of a motor vehicle, comprising a battery module (20) and a battery management system (40) for monitoring and regulating the battery module (20). In this context, a communication unit (30) is detachably connected to the battery management system (40), which communication unit (30) has a receiver unit for receiving data from the battery management system (40), a conversion unit for converting the data received by the battery management system (40), and a transmission unit for transmitting converted data to a control device of the motor vehicle.
Abstract:
The invention relates to a method for charging an electrical energy store, the electrical energy store comprising at least one electrical energy storage unit and a predefined maximum permissible energy-store voltage limit value being specified for the electrical energy store. The electrical energy store is charged with a pulsed charging voltage, a maximum value of the pulsed charging voltage being greater than the predefined maximum permissible energy-store voltage limit value over a pulse duration in the case of at least one pulse. The invention further relates to a corresponding device for charging the electrical energy store, to a corresponding computer program, to a corresponding machine-readable storage medium and to a corresponding electrical energy store.
Abstract:
The invention relates to a battery unit (10) for use in a vehicle electrical system (50) of a motor vehicle, comprising a battery module (20) for producing a first voltage between a positive pole (12) and a negative pole (11), a battery sensor (52), which is electrically connected to the negative pole (11), and a control element (30), which has a first terminal (31) electrically connected to the positive pole (12) and which comprises a DC-to-DC converter (35). The DC-to-DC converter (35) generates a second voltage between a second terminal (32) of the control element (30) and the negative pole (11) in dependence on at least one state variable of the battery module (20), and the battery sensor (52) is electrically connected to the second terminal (32), the battery sensor (52) having means for measuring the second voltage and means for measuring a current flowing through the negative pole (11), or the battery sensor (52) comprising a current sensor and being connected to a control unit which has means for measuring the second voltage and/or means for determining a current flowing through the negative pole (11). The invention also relates to a method for operating a battery unit (10) according to the invention in a vehicle electrical system (50) of a motor vehicle, wherein the second voltage is generated by the DC-to-DC converter (35) of the control element (30) in dependence on the state variable of the battery module (20).
Abstract:
The invention relates to a battery module housing (2001, . . . 2004) for a battery pack (10), characterized in that: the battery module housing (2001, . . . 2004) can contain a large number of battery cells (100111, . . . 100432) which each have a large wall surface (1201, 1202) and a small wall surface (1301, 1302), of which small wall surface the surface area is less than a surface area of the large wall surface (1201, 1202), wherein the battery cells (100119, 100129, 100132, 100142, 100219, 100229, 100232, 100242, 100319, 100329, 100332, 100342, 100419, 100432) which can be arranged adjacent to outer sides of the battery pack (10) can be oriented in such a way that their large wall surfaces (1201, 1202) run along the outer sides, so that a force which acts on one of the outer sides can initially be received by one of the large wall surfaces (1201, 1202), and also to a battery module (201, 204), to a battery (10), to a battery, to a vehicle and also to a method for producing a battery module (201, . . . 204), a battery pack (10) and a battery.
Abstract:
The disclosure relates to a method for battery management, wherein a magnitude of a current that can be provided by the battery within a prediction period is determined from an available magnitude of a status variable, which is predicted within the prediction period, wherein the predicted available magnitude of the status variable is determined by means of a difference between a permissible magnitude of the status variable, which is determined for a first reference period, and an obtained magnitude of the status variable, which is determined for the first reference period. The disclosure also relates to a computer program and a battery management system suitable for carrying out the method and to a motor vehicle having such a battery management system.
Abstract:
A device (10; 10′) for connecting battery cells (30), characterized by: a multiplicity of cell connectors (14) for electrically connecting terminals (36) of the battery cells (30), and a carrier (12; 12′) for mechanically connecting the cell connectors (14) to one another.
Abstract:
The disclosure relates to a method for battery management, wherein a magnitude of a current that can be provided by the battery within a prediction period is determined from an available magnitude of a status variable, which is predicted within the prediction period, wherein the predicted available magnitude of the status variable is determined by means of a difference between a permissible magnitude of the status variable, which is determined for a first reference period, and an obtained magnitude of the status variable, which is determined for the first reference period. The disclosure also relates to a computer program and a battery management system suitable for carrying out the method and to a motor vehicle having such a battery management system.
Abstract:
The invention relates to a method for charging an electrical energy store, the electrical energy store comprising at least one electrical energy storage unit and a predefined maximum permissible energy-store voltage limit value being specified for the electrical energy store. The electrical energy store is charged with a pulsed charging voltage, a maximum value of the pulsed charging voltage being greater than the predefined maximum permissible energy-store voltage limit value over a pulse duration in the case of at least one pulse. The invention further relates to a corresponding device for charging the electrical energy store, to a corresponding computer program, to a corresponding machine-readable storage medium and to a corresponding electrical energy store.
Abstract:
The invention relates to a battery module housing (2001, . . . 2004) for a battery pack (10), characterized in that: the battery module housing (2001, . . . 2004) can contain a large number of battery cells (100111, . . . 100432) which each have a large wall surface (1201, 1202) and a small wall surface (1301, 1302), of which small wall surface the surface area is less than a surface area of the large wall surface (1201, 1202), wherein the battery cells (100119, 100129, 100132, 100142, 100219, 100229, 100232, 100242, 100319, 100329, 100332, 100342, 100419, 100432) which can be arranged adjacent to outer sides of the battery pack (10) can be oriented in such a way that their large wall surfaces (1201, 1202) run along the outer sides, so that a force which acts on one of the outer sides can initially be received by one of the large wall surfaces (1201, 1202), and also to a battery module (201, 204), to a battery pack (10), to a battery, to a vehicle and also to a method for producing a battery module (201, . . . 204), a battery pack (10) and a battery.