Abstract:
Provided is a liquid reagent containing microchip having a fluid circuit formed of a space inside thereof. Liquid present in the fluid circuit is transferred to a desired position in the fluid circuit by applying centrifugal force. The fluid circuit includes a reagent retaining portion for accommodating a liquid reagent. The microchip includes an air introduction path formed of a groove provided on an outer surface of the microchip and coupled to the reagent retaining portion for introducing air into the reagent retaining portion, and a sealing portion provided so as to be detachable from the microchip for sealing the air introduction path. A method of using the microchip and a packaged liquid reagent containing microchip using the microchip are also provided.
Abstract:
There is provided a microchip including a fluid circuit composed of a space formed inside, and causing a liquid present in the fluid circuit to move within the fluid circuit by application of centrifugal force, the microchip including: an opening provided in a surface of the microchip and connected to the fluid circuit; a lid portion for opening and closing the opening; and a specimen take-in portion provided at the lid portion or in the opening, for taking in a specimen.
Abstract:
A microchip including a fluid circuit composed of a space formed inside is provided. The space includes a first space, a second space, and a space connecting portion connecting the first space and the second space, and the space connecting portion has a structure portion restraining liquid moving between the first space and the second space from moving due to wettability with respect to the space connecting portion surface.
Abstract:
Provided is a liquid reagent containing microchip having a fluid circuit formed of a space inside thereof. Liquid present in the fluid circuit is transferred to a desired position in the fluid circuit by applying centrifugal force. The fluid circuit includes a reagent retaining portion for accommodating a liquid reagent. The microchip includes an air introduction path formed of a groove provided on an outer surface of the microchip and coupled to the reagent retaining portion for introducing air into the reagent retaining portion, and a sealing portion provided so as to be detachable from the microchip for sealing the air introduction path. A method of using the microchip and a packaged liquid reagent containing microchip using the microchip are also provided.
Abstract:
A microchip includes fluid circuits therein, formed by uniting together at least a first substrate that is a transparent substrate and a second substrate having grooves provided at the substrate surface and/or through holes penetrating in a thickness direction. The fluid circuits include a liquid reagent receptacle unit to store a liquid reagent, a quantification unit to quantify the liquid reagent or specimen, and an overflow liquid storage unit connected to the quantification unit to store the liquid reagent or specimen overflowing from the quantification unit during quantification. There is also provided a method of using the microchip.
Abstract:
A microchip including a fluid circuit composed of a space formed inside is provided. The space includes a first space, a second space, and a space connecting portion connecting the first space and the second space, and the space connecting portion has a structure portion restraining liquid moving between the first space and the second space from moving due to wettability with respect to the space connecting portion surface.
Abstract:
A microchip which includes a fluid circuit defined by a space formed in the microchip and migrates a liquid present in the fluid circuit to a desired position in the fluid circuit by an applied centrifugal force, and a movement path control region (a surface region where an uneven pattern is formed on an inner surface of the fluid circuit) for controlling a movement path of the fluid.
Abstract:
A microchip which includes a fluid circuit defined by a space formed in the microchip and migrates a liquid present in the fluid circuit to a desired position in the fluid circuit by an applied centrifugal force, and a movement path control region (a surface region where an uneven pattern is formed on an inner surface of the fluid circuit) for controlling a movement path of the fluid.