摘要:
A class D power amplifier (PA) is provided. The PA generally comprises a driver, output capacitor, a matching network, and a cancellation circuit. The driver has an input, an output, and a parasitic capacitance, and the input of the driver is configured to receive complementary first and second radio frequency (RF) signals, where there is a free-fly interval between consecutive pulses from the first and second RF signals. The output capacitor and cancellation circuit are each coupled to the output of the driver such that the cancellation circuit provides harmonic restoration at least during the free-fly interval, and the matching network is coupled to the output capacitor.
摘要:
A method for generating an amplified radio frequency (RF) signal is provided. In-phase (I) and quadrature (Q) signals are received and interleaved so as to generate a time-interleaved signal. Delayed time-interleaved signals are then generated from the time interleaved signal, and each of the delayed time-interleaved signals is amplified so as to generate a plurality of amplified signals. The amplified signals are then combined with a transformer, where the delayed time-interleaved signals are arranged to generate a filter response with the transformer.
摘要:
A class D power amplifier (PA) is provided. The PA generally comprises a driver, output capacitor, a matching network, and a cancellation circuit. The driver has an input, an output, and a parasitic capacitance, and the input of the driver is configured to receive complementary first and second radio frequency (RF) signals, where there is a free-fly interval between consecutive pulses from the first and second RF signals. The output capacitor and cancellation circuit are each coupled to the output of the driver such that the cancellation circuit provides harmonic restoration at least during the free-fly interval, and the matching network is coupled to the output capacitor.
摘要:
A circuit includes a digital oscillator, a phase lock loop (PLL), a digital signal generator, a correction circuit and a digital-to-analog converter DAC (DAC). The digital oscillator can output a reference clock signal. The PLL can output a system clock signal based on the reference clock signal. The digital signal generator can output a digital signal based on the system clock signal. The correction circuit can output a pre-distorted signal based on the reference clock signal, the system clock signal and the digital signal. The DAC can output an analog signal based on the pre-distorted signal and the system clock signal.
摘要:
A circuit includes a digital oscillator, a phase lock loop (PLL), a digital signal generator, a correction circuit and a digital-to-analog converter DAC (DAC). The digital oscillator can output a reference clock signal. The PLL can output a system clock signal based on the reference clock signal. The digital signal generator can output a digital signal based on the system clock signal. The correction circuit can output a pre-distorted signal based on the reference clock signal, the system clock signal and the digital signal. The DAC can output an analog signal based on the pre-distorted signal and the system clock signal.
摘要:
An amplifier and a driver circuit therefor are presented for driving a load according to a system analog input. The amplifier comprises a passive delta-sigma modulator with a passive filter providing a first filtered signal according to a passive filter input and according to a feedback signal, a quantizer coupled with the passive filter and providing a quantized output according to the first filtered signal, and a switching system coupled with the the passive filter and the quantizer. The switching system selectively providing power to a load according to the quantized output and provides the feedback signal to the passive input, wherein a gain amplifier is provided in a feedback loop around the passive delta-sigma modulator.
摘要:
A fourth order delta sigma analog-to-digital converter is presented, comprising a passive delta sigma modulator including a passive filter, a quantizer, and a digital-to-analog converter in a first feedback loop, and an active filter having a large gain factor in a second feedback loop around the passive delta-sigma modulator.
摘要:
A system for processing a signal includes a detector configured to detect a two-level stream of bits; a converter configured to generate a three-level control signal based on two adjacent values within the two-level stream of bits; and a switch configured to determine which of three different paths to couple a current source to based on a value of the three-level control signal. Thus, based on adjacent values of the output stream a three-level control signal is generated which controls coupling of the current source to one of three different paths. This type of three-level digital-to-analog converter can be, for example, part of the feedback loop of an analog-to-digital converter. Similar techniques can also be utilized in a multi-segment digital-to-analog converter in which each segment of the DAC is controlled by a 3-level control signal and the DAC is implement using PMOS devices. The current source for each DAC segment is diverted to ground, the M-node, or the P-node depending on the value of the 3-level control signal.
摘要:
A system for processing a signal includes a detector configured to detect a two-level stream of bits; a converter configured to generate a three-level control signal based on two adjacent values within the two-level stream of bits; and a switch configured to determine which of three different paths to couple a current source to based on a value of the three-level control signal. Thus, based on adjacent values of the output stream a three-level control signal is generated which controls coupling of the current source to one of three different paths. This type of three-level digital-to-analog converter can be, for example, part of the feedback loop of an analog-to-digital converter. Similar techniques can also be utilized in a multi-segment digital-to-analog converter in which each segment of the DAC is controlled by a 3-level control signal and the DAC is implement using PMOS devices. The current source for each DAC segment is diverted to ground, the M-node, or the P-node depending on the value of the 3-level control signal.
摘要:
A fourth order delta sigma analog-to-digital converter is presented, comprising a passive delta sigma modulator including a passive filter, a quantizer, and a digital-to-analog converter in a first feedback loop, and an active filter having a large gain factor in a second feedback loop around the passive delta-sigma modulator.