摘要:
The invention provides an elevator system for controlling movement of an elevator car with respect to guide rails in an elevator hoistway, having a force-estimation or position-scheduled current command controller and a magnet driver circuit without the need for a flux sensor. The force-estimation or position-scheduled current command controller responds to a force command signal, and further responds to a sensed gap signal, for providing a force-estimation or position-scheduled current command controller signal as a current command to the magnet driver circuit. The magnet driver circuit responds to the force-estimation or position-scheduled current command controller signal, for providing a magnet driver circuit signal to control said horizontal movement of the elevator car with respect to the guide rail in the elevator hoistway, whereby the horizontal movement of the elevator car is controlled without sensing magnetic flux. Other applications include any system that uses an electromagnet to produce an attractive or repulsive force across a large air gap, such as magnetic levitation trains or shuttles, and magnetic bearings.
摘要:
In an elevator active guidance system, in order to avoid the action of one actuator (23) from interfering with the action of another, a controller (21) is provided that uses a force law based on a model of the elevator (40), and uses information from all of the sensors (22) in combination to determine, according to the force law, the force each actuator (23) should provide. The model of the elevator (40) is used to determine how the elevator (40) will respond to the forces exerted by the actuators (23). In the preferred embodiment, the elevator (40) is assumed to respond to the actuator forces as a rigid body. The full model is built up from this basic assumption, finally including all of the geometric and inertial attributes of the elevator necessary to describe its rigid body motion in response to forces from actuators (23).
摘要:
A thin film acoustic transducer is formed with an electrically actuatable substantially transparent thin film. Substantially transparent conductive thin films are supported on both sides of the electrically actuatable substantially transparent thin film. The thin film transducer may be used to sense sound, or produce sound in various embodiments. In further embodiments, the film may be attached to a window, and operate as a speaker for an audio system, or may provide noise cancellation functions. In further embodiments, the film may be attached to a computer monitor, touch panel, poster, or other surface, and operate as a speaker. A method of forming carbon nanotube thin films uses a layer by layer assembly technique and a positively charged hydrophilic layer on a thin film substrate.
摘要:
A thin film acoustic transducer is formed with an electrically actuatable substantially transparent thin film. Substantially transparent conductive thin films are supported on both sides of the electrically actuatable substantially transparent thin film. The thin film transducer may be used to sense sound, or produce sound in various embodiments. In further embodiments, the film may be attached to a window, and operate as a speaker for an audio system, or may provide noise cancellation functions. In further embodiments, the film may be attached to a computer monitor, touch panel, poster, or other surface, and operate as a speaker. A method of forming carbon nanotube thin films uses a layer by layer assembly technique and a positively charged hydrophilic layer on a thin film substrate.
摘要:
A device includes a first sensor and a second sensor. The first sensor is configured to generate a first signal corresponding to a detected first force. The second sensor is configured to generate a second signal corresponding to a detected second force. The first force and the second force has a substantially common direction. The device includes a processor configured to determine a measure of tension using the first signal and using the second signal. The measure of tension corresponds to displacement of an elongate member.
摘要:
In general, the disclosure is directed to techniques for sensing the weight of a load object passing over a measurement surface. In some examples, a weigh-in motion (WIM) sensor is provided that includes a first beam that exhibits a linear elastance function, and a second beam that exhibits a nonlinear elastance function. In additional examples, the WIM sensor may include a measurement circuit configured to generate information corresponding to a weight of the load object, a wireless transmission circuit configured to transmit the information to a receiving station, and an energy harvesting circuit configured to harvest an amount of energy from vehicle vibrations. The energy harvested may be sufficient to power the wireless transmission circuit. In further examples, a WIM system is provided that includes a sequence of sensors. Information from the sequence of sensors may be used to remove noise in the raw data due to vehicle vibration.
摘要:
Some embodiments of a tissue sensor may include a micro-fabricated structure that can be coupled to a medical instrument, such as a probe, an endoscopic tool, or another minimally invasive instrument. The tissue sensor can be configured to provide information indicate of tissue properties, such as tissue elasticity characteristics or the type of tissue.
摘要:
Some embodiments of a tissue sensor may include a micro-fabricated structure that can be coupled to a medical instrument, such as a probe, an endoscopic tool, or another minimally invasive instrument. The tissue sensor can be configured to provide information indicate of tissue properties, such as tissue elasticity characteristics or the type of tissue.