摘要:
A communications circuit includes a filter module with a sampling window, a control module, and an input buffer. The control module has a ray parameter interface to obtain information regarding significant ray changes that make it desirable to re-position the sampling window. The control module determines re-positioning parameters, responsive to this information, which reflect the re-positioning of the sampling window. The input buffer obtains samples of a received signal and outputs received signal data to the filter module. The filter module obtains the re-positioning parameters from the control module, and the filter module and control module temporally re-position the sampling window in duration and/or location in accordance with the re-positioning parameters, and output a filtered chip.
摘要:
A multi-stage receiver including, in one embodiment, a sequence of processing stages. At least one of the processing stages includes a first processing block, a delay block, and a second processing block. The first processing block is adapted to receive an input signal and generate from the input signal one or more processing parameters. The delay block is adapted to generate a delayed signal. The second processing block is adapted to apply the one or more processing parameters to the delayed signal to generate an output signal. The delay block compensates for one or more processing delays associated with the generation of the one or more processing parameters by the first processing block.
摘要:
A multi-stage receiver including, in one embodiment, a sequence of processing stages. At least one of the processing stages includes a first processing block, a delay block, and a second processing block. The first processing block is adapted to receive an input signal and generate from the input signal one or more processing parameters. The delay block is adapted to generate a delayed signal. The second processing block is adapted to apply the one or more processing parameters to the delayed signal to generate an output signal. The delay block compensates for one or more processing delays associated with the generation of the one or more processing parameters by the first processing block.
摘要:
In one embodiment, a receiver has a reference generator and a main equalizer. The reference generator equalizes a received signal using one or more pilot reference signals. Then, the reference generator decodes one or more predetermined data channels of the equalized signal, makes hard decisions on the data of each decoded channel, and regenerates the original coding sequence of each decoded channel. The main equalizer uses each re-encoded channel as an additional reference signal along with one or more pilot signals to equalize a time-delayed version of the received signal. In alternative embodiments, the receiver might also have a step-size generator which selects optimum step sizes from a look-up table based on the number of re-encoded channels and the power of those channels. The step size is then used by the main equalizer along with the re-encoded channels to equalize the time-delayed received signal.
摘要:
In one embodiment, a receiver has a reference generator and a main equalizer. The reference generator equalizes a received signal using one or more pilot reference signals. Then, the reference generator decodes one or more predetermined data channels of the equalized signal, makes hard decisions on the data of each decoded channel, and regenerates the original coding sequence of each decoded channel. The main equalizer uses each re-encoded channel as an additional reference signal along with one or more pilot signals to equalize a time-delayed version of the received signal. In alternative embodiments, the receiver might also have a step-size generator which selects optimum step sizes from a look-up table based on the number of re-encoded channels and the power of those channels. The step size is then used by the main equalizer along with the re-encoded channels to equalize the time-delayed received signal.
摘要:
A communications circuit includes a filter module with a sampling window, a control module, and an input buffer. The control module has a ray parameter interface to obtain information regarding significant ray changes that make it desirable to re-position the sampling window. The control module determines re-positioning parameters, responsive to this information, which reflect the re-positioning of the sampling window. The input buffer obtains samples of a received signal and outputs received signal data to the filter module. The filter module obtains the re-positioning parameters from the control module, and the filter module and control module temporally re-position the sampling window in duration and/or location in accordance with the re-positioning parameters, and output a filtered chip.
摘要:
In one embodiment, a receiver has a reference generator and a main equalizer. The reference generator equalizes a received signal using one or more pilot reference signals. Then, the reference generator decodes one or more predetermined data channels of the equalized signal, makes hard decisions on the data of each decoded channel, and regenerates the original coding sequence of each decoded channel. The main equalizer uses each re-encoded channel as an additional reference signal along with one or more pilot signals to equalize a time-delayed version of the received signal. In alternative embodiments, the receiver might also have a step-size generator which selects optimum step sizes from a look-up table based on the number of re-encoded channels and the power of those channels. The step size is then used by the main equalizer along with the re-encoded channels to equalize the time-delayed received signal.
摘要:
In one embodiment, a receiver has a reference generator and a main equalizer. The reference generator equalizes a received signal using one or more pilot reference signals. Then, the reference generator decodes one or more predetermined data channels of the equalized signal, makes hard decisions on the data of each decoded channel, and regenerates the original coding sequence of each decoded channel. The main equalizer uses each re-encoded channel as an additional reference signal along with one or more pilot signals to equalize a time-delayed version of the received signal. In alternative embodiments, the receiver might also have a step-size generator which selects optimum step sizes from a look-up table based on the number of re-encoded channels and the power of those channels. The step size is then used by the main equalizer along with the re-encoded channels to equalize the time-delayed received signal.
摘要:
In one embodiment, an HSDPA co-processor for 3GPP Release 6 Category 8 (7.2 Mb/s) HSDPA that provides all chip-rate, symbol-rate, physical-channel, and transport-channel processing for HSDPA in 90 nm CMOS. The co-processor design is scalable to all HSDPA data rates up to 14 Mb/s. The coprocessor implements an Advanced Receiver based on an NLMS equalizer, supports RX diversity and TX diversity, and provides up to 6.4 dB better performance than a typical single-antenna rake receiver. Thus, 3GPP R6 HSDPA functionality can be added to a legacy R99 modem using an HSDPA co-processor consistent with embodiments of the present invention, at a reasonable incremental cost and power.
摘要:
The present application discloses systems and methods for distributed processing of electrophysiological signals. The system may include a processor, a remote device, and an implant comprising an array of electrodes. The method may comprise the processor receiving an electrophysiological signal request from the remote device that specifies at least one electrode at the implant from which to receive an electrophysiological signal, transmitting to the implant instructions to apply a plurality of stimuli via the specified at least one electrode and, for individual stimuli in the plurality of stimuli, recording an electrophysiological signal component resulting from the stimulus. The method may also comprise the processor combining the recorded individual electrophysiological signal components to produce the electrophysiological signal and transmitting the electrophysiological signal to the remote device for further processing. In some embodiments of the method, the processor may compress the electrophysiological signal before transmitting it to the remote device.