Abstract:
The invention provides a stent delivery system and a stent device. The stent delivery system includes a catheter, a balloon operably attached to the catheter, and a stent disposed on the balloon. The stent includes at least one coating applied by dipping a portion of the stent into a coating liquid while simultaneously rotating the stent. The stent device includes a body and at least one coating rotationally applied to a portion of the body, while the body is at least partially immersed in a coating liquid.
Abstract:
The present invention provides a method of forming a drug-polymer coated stent. A polymeric coating is applied onto at least a portion of a stent framework and dried. A jet of heated gas is directed towards excess coating portions of the dried polymeric coating. The excess coating portions, which extend into apertures of the stent framework, are removed from the apertures of the stent framework by reflowing the polymeric coating with the directed jet of heated gas. A drug-polymer coated stent with a reflowed drug-polymer coating and a system for treating a vascular condition are also disclosed.
Abstract:
The present invention provides a system for treating a vascular condition, which includes a catheter; a stent coupled to the catheter, the stent including a stent framework; a phenoxy primer coating operably disposed on the stent framework; and a drug-polymer coating disposed on the phenoxy primer coating. The present invention also provides a drug-coated stent and a method of manufacturing a drug-coated stent.
Abstract:
The present invention provides a system for treating a vascular condition, including a catheter, a stent coupled to the catheter, a drug-polymer coating on the stent including a grafted styrenic block copolymer, and at least one bioactive drug dispersed within the drug-polymer coating.
Abstract:
The present invention provides a system for treating a vascular condition, including a catheter, a stent coupled to the catheter, a drug-polymer coating on the stent including a polymeric blend of a phenoxy polymer and a styrenic block copolymer, and a bioactive drug dispersed within the drug-polymer coating.
Abstract:
The present invention provides a method of forming a drug-polymer coated stent. A polymeric coating is applied onto at least a portion of a stent framework and dried. A jet of heated gas is directed towards excess coating portions of the dried polymeric coating. The excess coating portions, which extend into apertures of the stent framework, are removed from the apertures of the stent framework by reflowing the polymeric coating with the directed jet of heated gas. A drug-polymer coated stent with a reflowed drug-polymer coating and a system for treating a vascular condition are also disclosed.
Abstract:
A system for forming a drug-polymer coated stent includes means for applying a polymeric coating onto at least a portion of a stent framework, means for drying the applied polymeric coating on the stent framework and means for directing a jet of heated gas towards excess coating portions of the dried polymeric coating that extend into apertures of the stent framework. The system also includes means for reflowing the polymeric coating with the directed jet of heated gas to remove the excess coating portions from the apertures of the stent framework.
Abstract:
A method of coating a stent includes immersing a portion of the stent into a coating liquid, and withdrawing the immersed portion of the stent from the coating liquid. The stent is simultaneously rotated with respect to the coating liquid while the stent is being immersed and withdrawn.
Abstract:
A system for forming a drug-polymer coated stent includes means for applying a polymeric coating onto at least a portion of a stent framework, means for drying the applied polymeric coating on the stent framework and means for directing a jet of heated gas towards excess coating portions of the dried polymeric coating that extend into apertures of the stent framework. The system also includes means for reflowing the polymeric coating with the directed jet of heated gas to remove the excess coating portions from the apertures of the stent framework.
Abstract:
The invention provides a method of delivering a therapeutic agent to the adventitia of a vessel using a catheter-based microsyringe. A therapeutic agent is formed into microparticles, which are dispersed throughout an appropriate liquid carrier to form a therapeutic mixture. A catheter is provided that includes a microsyringe operably attached to an actuator. The microsyringe includes a hollow needle in fluid communication with a therapeutic agent delivery conduit. The catheter is introduced into a target area of a vessel. The actuator is operated to thrust the needle into a wall of the vessel. The therapeutic mixture is supplied to the therapeutic agent delivery conduit and delivered through the conduit to the needle and thereby into the adventitia of the vessel. The actuator is again operated to withdraw the needle from the wall of the vessel and to enclose it within the actuator. The catheter is then removed from the vessel.