Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
A mechanical device includes a long, narrow element made of a rigid, elastic material. A rigid frame is configured to anchor at least one end of the element, which is attached to the frame, and to define a gap running longitudinally along the element between the beam and the frame, so that the element is free to move within the gap. A solid filler material, different from the rigid, elastic material, fills at least a part of the gap between the element and the frame so as to permit a first mode of movement of the element within the gap while inhibiting a different, second mode of movement.
Abstract:
Provided is a Micro-Electro-Mechanical Systems (MEMS) device for actuating a gimbaled element, the device including a symmetric electromagnetic actuator for actuating one degree of freedom (DOF) and a symmetric electrostatic actuator for actuating the second degree of freedom.
Abstract:
Tunable spectral filter includes a Fabry-Pérot interferometer (FPI), at least three actuators, at least three respective spring elements, and at least three respective sensors. The FPI includes two optical elements each having a partially reflective surface, with an optical cavity defining an optical gap between the two surfaces. The actuators, spring elements and sensors are disposed along the periphery of the optical elements. Multi-wavelength incident light enters the first optical element toward the optical cavity. Each actuator applies a selective force to move the optical element surfaces relative to each other, as the respective spring element applies an opposing force, thereby establishing an optical gap width, while maintaining the optical element surfaces substantially in parallel. Each sensor continuously detects the optical gap width and the planar parallelism, and provides a feedback signal to the actuators to apply selective forces to adjust the optical gap width or planar parallelism, if necessary.
Abstract:
A method of scanning a light beam is disclosed. The method comprises scanning the light beam along a first axis and scanning the light beam along a second axis, such that a functional dependence of the scanning along the first axis is substantially a step-wave, and a functional dependence of the scanning along the second axis is other than a step-wave.
Abstract:
A method of scanning a light beam is disclosed. The method comprises scanning the light beam along a first axis and scanning the light beam along a second axis, such that a functional dependence of the scanning along the first axis is substantially a step-wave, and a functional dependence of the scanning along the second axis is other than a step-wave.
Abstract:
A method of scanning a light beam is disclosed. The method comprises scanning the light beam along a first axis and scanning the light beam along a second axis, such that a functional dependence of the scanning along the first axis is substantially a step-wave, and a functional dependence of the scanning along the second axis is other than a step-wave.