Abstract:
Systems and methods for forming network connections are described. Embodiments of the systems and methods can include identifying a plurality of network nodes in a network system; partitioning the plurality of network nodes into a disjoint network element; identifying, based on the disjoint network element, a first virtual connection between an entry node and an exit node; assigning a first bandwidth to the first virtual connection; and forming a connection domain among the partitioned plurality of network nodes, the connection domain including the first virtual connection.
Abstract:
An in-band signalling system for the transmission of both data and control signals through a common communications channel is disclosed. Unique means of distinguishing data bits from control bits is employed without the use of additional bandwidth over that which would be required for the data alone.A novel method for signalling includes the steps of translating the data bits into a different code set than the original, examining it for control words and if any are present, modifying or corrupting the data and thereafter combining on a time division basis the translated and/or modified data and control words over a transmission channel. To receive, data is inversely modified and control words detected. Error detection of control words is achieved by translating control words followed by their complements.
Abstract:
An apparatus and method for network routing is provided. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Nodes in the network can aggregate and disaggregate data according to a transform algorithm allowing for dynamic frame and frame segment sizing. Connections within the network can be organized by paired connections performing aggregation and disaggregation according to control vectors.
Abstract:
An apparatus and method for network routing is provided. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Nodes in the network can aggregate and disaggregate data according to a transform algorithm allowing for dynamic frame and frame segment sizing. Connections within the network can be organized by paired connections performing aggregation and disaggregation according to control vectors.
Abstract:
Disclosed is a synchronized adaptive infrastructure (SAIN) network. Switches, synchronized nodes, and persistent connections can be used. Also described are methods and apparatus for the following functions: disjoint partitioning; data aggregation and disaggregation; interfacing with packet-based networks; bandwidth management; use of control vectors for security, addressing, error control, routing, etc. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Methods of synchronizing and transforming data streams are disclosed, as well as overcoming Doppler, environmental, and frequency offset effects.
Abstract:
An apparatus and method for network routing is provided. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Nodes in the network can aggregate and disaggregate data according to a transform algorithm allowing for dynamic frame and frame segment sizing. Connections within the network can be organized by paired connections performing aggregation and disaggregation according to control vectors.
Abstract:
Disclosed is a synchronized adaptive infrastructure (SAIN) network. Switches, synchronized nodes, and persistent connections can be used. Also described are methods and apparatus for the following functions: disjoint partitioning; data aggregation and disaggregation; interfacing with packet-based networks; bandwidth management; use of control vectors for security, addressing, error control, routing, etc. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Methods of synchronizing and transforming data streams are disclosed, as well as overcoming Doppler, environmental, and frequency offset effects.
Abstract:
The method of the present invention achieves a desired assignment of the physical cell slots comprising a time division multiplexed frame to embedded channels by ascribing an element address to uniquely identify each of the cell slots of the frame. A logical assignment of the cell slots of the frame is made to the embedded channels to be established between one or more specific data sources and sinks. A transform chosen to produce a particular distribution of assignments is then applied to the set of element addresses to produce a set of cell slot addresses, each of which uniquely identifies each cell slot of the frame by its relative physical position within the frame. Each of the element addresses (used to logically associate a cell slot with a channel to be established) is uniquely linked on a one-to-one basis with one of the set of cell slot addresses (used to identify relative position of a cell slot within the frame) through the predetermined transform. This linking of element addresses to cell slot addresses results in a mapping of the channels to cell slots based on their ordered physical position within the frame. The mapping characteristics are directly a function of the nature of the transform, which can be any predetermined transform designed to achieve desired mapping characteristics. The cell slot addresses are then mapped to position numbers as a function of their relative numerical values, thus completing the mapping of cell slots to channels by their ordinal positions within the frame.
Abstract:
Systems and methods for forming network connections are described. Embodiments of the systems and methods can include identifying a plurality of network nodes in a network system; partitioning the plurality of network nodes into a disjoint network element; identifying, based on the disjoint network element, a first virtual connection between an entry node and an exit node; assigning a first bandwidth to the first virtual connection; and forming a connection domain among the partitioned plurality of network nodes, the connection domain including the first virtual connection.
Abstract:
Disclosed is a synchronized adaptive infrastructure (SAIN) network. Switches, synchronized nodes, and persistent connections can be used. Also described are methods and apparatus for the following functions: disjoint partitioning; data aggregation and disaggregation; interfacing with packet-based networks; bandwidth management; use of control vectors for security, addressing, error control, routing, etc. Synchronized networks are disclosed which enable fast connection set up and release in a tiered hierarchy of circuit switched nodes. Methods of synchronizing and transforming data streams are disclosed, as well as overcoming Doppler, environmental, and frequency offset effects.