摘要:
A method, system and apparatus for manufacturing anatomically and functionally accurate soft tissue phantoms with multimodality characteristics for imaging studies is disclosed. The organ/tissue phantom is constructed by filling a container containing an organ having inner vasculature therein with a molten elastomeric material; inserting a plurality of rods with bumps thereupon through the container and the organ; allowing the molten elastomeric material to harden and cure; removing the organ; replacing the organ with a plurality of elastomeric segments; and removing an elastomeric segment and replacing the void created thereupon with molten PVA to create a PVA segment; allowing the molten PVA segment to harden and cure; and repeating the creation of PVA segments until all the elastomeric segments have been removed, such that each successive molten PVA segment adheres to and fuses with the previous hardened PVA segment so as to form an approximately complete organ phantom cast. The organ/tissue phantom is completed by inserting the approximately complete organ phantom cast inserting upside-down into a fixture made from the bottom-most elastomeric segment, which contains molten PVA; and allowing the molten PVA to harden and cure.
摘要:
A system and method are provided for tracking a functional part of an instrument during an interventional procedure and displaying dynamic imaging corresponding to a functional part of the instrument. The system comprises: at least one instrument; a system for acquiring anatomical images relevant to guiding the instrument; a tether connected to the imaging system at a fixed end and connected to the instrument at a distal end, the tether comprising at least one longitudinal optical fiber with a plurality of optical shape sensors; an optical console that interrogates the sensors and detects reflected light; and a processor that calculates local curvature at each sensor location to determine the three-dimensional shape of the tether and determines the location and orientation of the instrument relative to the images using the local curvatures of the tether and the location of the fixed end of the tether.
摘要:
A system and method are provided for tracking a functional part of an instrument during an interventional procedure and displaying dynamic imaging corresponding to a functional part of the instrument. The system comprises: at least one instrument; a system for acquiring anatomical images relevant to guiding the instrument; a tether connected to the imaging system at a fixed end and connected to the instrument at a distal end, the tether comprising at least one longitudinal optical fiber with a plurality of optical shape sensors; an optical console that interrogates the sensors and detects reflected light; and a processor that calculates local curvature at each sensor location to determine the three-dimensional shape of the tether and determines the location and orientation of the instrument relative to the images using the local curvatures of the tether and the location of the fixed end of the tether.
摘要:
An interventional instrument, system and method include an elongated flexible member (100) having one or more segmented sections (101) disposed longitudinally. An optical fiber (104) is disposed internally in the flexible member. A plurality of optical sensors (102) are coupled to the optical fiber and distributed along a length of the flexible member such that the optical sensors are positioned to monitor parameters simultaneously at different positions or at different data sources along the flexible member to provide distributed sensing.
摘要:
An apparatus, system and method determining a position of an instrument (100) are provided. A sheath (104) is configured to fit within an instrument channel of a medical scope. An optical fiber (112) is disposed within the sheath and a plurality of sensors (106) is integrated in optical fiber. The sensors are configured to measure deflections and bending in the optical fiber. A fixing mechanism (140) is sized to fit within the instrument channel in a first state and fixes the sheath within the instrument channel in a second state such that the fixing mechanism anchors the sheath and the optical fiber so that the deflections and bending in the optical fiber are employed to determine a position of the instrument.
摘要:
An apparatus, system and method for determining a position includes a transducer device (102) configured to receive signals from a console (104) and generate images based upon reflected waves. A flexible cable (108) is coupled to the transducer device to provide excitation energy to the transducer device from the console. An optical fiber (110) has a shape and position corresponding to a shape and position of the cable during operation. A plurality of sensors (122) is in optical communication with the optical fiber. The sensors are configured to measure deflections and bending in the optical fiber such that the deflections and bending in the optical fiber are employed to determine positional information about the transducer device.
摘要:
An apparatus, system and method for determining a position includes a transducer device (102) configured to receive signals from a console (104) and generate images based upon reflected waves. A flexible cable (108) is coupled to the transducer device to provide excitation energy to the transducer device from the console. An optical fiber (110) has a shape and position corresponding to a shape and position of the cable during operation. A plurality of sensors (122) is in optical communication with the optical fiber. The sensors are configured to measure deflections and bending in the optical fiber such that the deflections and bending in the optical fiber are employed to determine positional information about the transducer device.
摘要:
A calibration/surgical tool includes an electromagnetic sensor array of two or more electromagnetic sensors in a known geometrical configuration. Electromagnetic tracking errors are characterized by a mapping of pre-operative absolute and relative errors based on a movement of a calibrated calibration/surgical tool through a pre-operative electromagnetic field. Using statistical mapping, a desired absolute error field is measured either in the clinic as the part of daily quality control checks, or before the patient comes in or in vivo. A resulting error field may be displayed to the physician to provide clear visual feedback about measurement confidence or reliability of localization estimates of the absolute errors in electromagnetic tracking.
摘要:
A calibration/surgical tool (90, 160) includes an electromagnetic sensor array (30) of two or more electromagnetic sensors in a known geometrical configuration. Electromagnetic tracking errors are characterized by a mapping of pre-operative absolute and relative errors based on a movement of a calibrated calibration/surgical tool (90, 160) through a pre-operative electromagnetic field. Using statistical mapping, a desired absolute error field (46) is measured either in the clinic as the part of daily quality control checks, or before the patient comes in or in vivo. A resulting error field (46) may be displayed to the physician to provide clear visual feedback about measurement confidence or reliability of localization estimates of the absolute errors in electromagnetic tracking.
摘要:
A reflection reduction device includes an optical fiber (104) configured for optical sensing and having an end portion. A tip portion (102) is coupled to the end portion. The tip portion includes a length dimension (d) and is index matched to the optical fiber. The tip portion is further configured to include an absorption length to absorb and scatter light within the length dimension, and a surface (S) opposite the end portion is configured to reduce back reflections.