摘要:
The method of analyzing a difference of at least two gradings of an image on the basis of: obtaining a first graded picture (LDR) with a first luminance dynamic range; obtaining data encoding a grading of a second graded picture (HDR) with a second luminance dynamic range, different from the first luminance dynamic range; determining a grading difference data structure (DATGRAD) on the basis of at least the data encoding the grading of the second graded picture (HDR), allows more intelligently adaptive encoding of the imaged scenes, and consequently also better use of those pictures, such as higher quality rendering under various rendering scenarios.
摘要:
The method of analyzing a difference of at least two gradings of an image on the basis of: obtaining a first graded picture (LDR) with a first luminance dynamic range; obtaining data encoding a grading of a second graded picture (HDR) with a second luminance dynamic range, different from the first luminance dynamic range; determining a grading difference data structure (DATGRAD) on the basis of at least the data encoding the grading of the second graded picture (HDR), allows more intelligently adaptive encoding of the imaged scenes, and consequently also better use of those pictures, such as higher quality rendering under various rendering scenarios.
摘要:
An approach is provided for generating a high dynamic range image from a low dynamic range image. The generation is performed using a mapping relating input data in the form of input sets of image spatial positions and a combination of color coordinates of low dynamic range pixel values associated with the image spatial positions to output data in the form of high dynamic range pixel values. The mapping is generated from a reference low dynamic range image and a corresponding reference high dynamic range image. Thus, a mapping from the low dynamic range image to a high dynamic range image is generated on the basis of corresponding reference images. The approach may be used for prediction of high dynamic range images from low dynamic range images in an encoder and decoder. A residual image may be generated and used to provide improved high dynamic range image quality.
摘要:
Several approaches are disclosed for combining HDR and 3D image structure analysis and coding, in particular an encoding apparatus for encoding a first view high dynamic range image and a second view high dynamic range image comprising: first and second HDR image receivers (203, 1201) arranged to receive the first view high dynamic range image and a second view high dynamic range image; a predictor (209) arranged to predict the first view high dynamic range image from a low dynamic range representation of the first view high dynamic range image; and a view predictor (1203) to predict the second view high dynamic range image from at least one of the first view high dynamic range image, a low dynamic range representation of the second view high dynamic range image, or a low dynamic range representation of the first view high dynamic range image.
摘要:
Several approaches are disclosed for combining HDR and 3D image structure analysis and coding, in particular an encoding apparatus for encoding a first view high dynamic range image and a second view high dynamic range image comprising: first and second HDR image receivers (203, 1201) arranged to receive the first view high dynamic range image and a second view high dynamic range image; a predictor (209) arranged to predict the first view high dynamic range image from a low dynamic range representation of the first view high dynamic range image; and a view predictor (1203) to predict the second view high dynamic range image from at least one of the first view high dynamic range image, a low dynamic range representation of the second view high dynamic range image, or a low dynamic range representation of the first view high dynamic range image.
摘要:
An approach is provided for generating a depth indication map from an image. The generation is performed using a mapping relating input data in the form of input sets of image spatial positions and a combination of color coordinates of pixel values associated with the image spatial positions to output data in the form of depth indication values. The mapping is generated from a reference image and a corresponding reference depth indication map. Thus, a mapping from the image to a depth indication map is generated on the basis of corresponding reference images. The approach may be used for prediction of depth indication maps from images in an encoder and decoder. In particular, it may be used to generate predictions for a depth indication map allowing a residual image to be generated and used to provide improved encoding of depth indication maps.
摘要:
A 3-D picture is provided by providing a pair of pictures that includes a first picture for one eye of a viewer, and a second picture for the other eye of the viewer. In addition, a depth map specifically dedicated to the first picture is provided. The depth map includes depth indication values. A depth indication value relates to a particular portion of the first picture and indicates a distance between an object at least partially represented by that portion of the first picture and the viewer. The 3-D picture is supplemented with rendering guidance data that specifies respective parameters for respective rendering contexts. These respective parameters relate to generating a shifted viewpoint picture from the first picture and the depth map.
摘要:
A method of encoding an image pair (L,R) corresponding with two views of a multi-view signal, the method comprising generating a first combined image (LeRo) based on a first low pass filtered version of a first image of the image pair and a first low-pass filtered version of the second image of the image pair, generating a base-layer (LR-bas) by encoding the first combined image (LeRo), generating first and second disparity based predictors (LpredD,RpredD) and respectively associated first and second block-based displacement vectors (LHvec,RHvec) associated with the image information encoded in the base layer (LeRo′), the first and second block-based displacement vectors (LHvec,RHvec) being generated using disparity information present in the first and second images (L,R), the image information encoded in the base-layer (LeRo′) and the respective first and second images (L,R), generating an enhancement-layer (LR-enh; L-enh,R-enh) by encoding the first and second images (L,R) using the first and second disparity based predictors (LpredD, RpredD).
摘要:
Video data signals are encoded such that the encoded video data signal includes at least a primary and at least a secondary video data signal. The primary and secondary video data signals are jointly compressed. The primary video data signal is compressed in a self-contained manner, and the secondary video data signal is compressed using data from the primary video data signal. The jointly compressed video data signal is split into separate bitstreams, at least a primary bitstream including data for the primary video data signal and at least a secondary bitstream including data for the secondary video data signal. The primary and secondary bitstreams are multiplexed into a multiplexed signal, and the primary and secondary signals are provided with separate codes.
摘要:
Clusters of pixels are defined for use in image compression and decompression. The image information used to define the clusters may include pixel values at predetermined positions relative to a pixel or related motion vectors, gradients, texture etc. During compression of images the image information relative to pixels is examined to determine the cluster to which it belongs. Thus pixels can be classified according to the cluster for their image information. In an embodiment the definitions of the clusters are selected dynamically, dependent on image content. For each cluster a control parameter set is computed for a post-processing operation, such as filter coefficients for filtering or statistical data for locally generating texture. The control parameter set is selected dependent on the image content so that, when the post-processing operation is applied to the image after decompression it will improve image quality for the pixels that are classified as belonging to the cluster. The compressed image and the control parameter sets are transmitted to a decompression apparatus. Upon decompression, the image information that represents the decompressed image is examined to classify pixels according to the clusters and the different control parameter sets for the selected clusters are used to control post-processing at the locations of the pixels.