Abstract:
A method for reducing the working temperature of a tire tread for vehicles utilizing a tire tread comprising a first portion and a second portion. The first portion comprising 100 parts by weight of an elastomeric material, 40-120 parts by weight of a filler, comprising from 50 to 100% by weight of carbon black and from 0 to 50% of silica, and 3-40 parts by weight of at least a conventional additive. The second portion comprising 100 parts by weight of an elastomeric material, 40-120 parts by weight of a filler, comprising from 30 to 100% by weight of silica and from 0 to 70% of carbon black, and 3-40 parts by weight of at least a conventional additive. However, the silica content in the second portion is at least 20% higher than in the first portion. Tires wherein the area of the first portion exceeds 37.1% of the total area of the tire tread are also disclosed.
Abstract:
A tyre for a wheel of a vehicle comprises a toroidal carcass provided with axially opposite sidewalls and beads for anchoring the tyre to a rim of the wheel, a tread band located crownwise on the carcass, comprising a surface with a plurality of hollows and grooves defining a raised tread pattern, and a belt structure interposed between the carcass and the tread band, axially extending between the sidewalls. The tread band comprises at least first and second circumferential axially-contiguous portions arranged to contact a road surface. The first portion is formed of a first composition comprising a reinforcing filler having at least 40%-by-weight carbon black and at least some white filler, the second portion is formed of a second composition comprising a reinforcing filler having at least 20%-by-weight white filler, and the first composition is different from the second composition. A difference of compositions between the at least first and second portions achieves a tyre operating temperature lower than a reference temperature.
Abstract:
A tire for a vehicle includes a radial carcass, a tread band disposed radially outward of the carcass, and a belt structure interposed between the carcass and the tread band. The tread band also includes a first portion of a first elastomeric compound having a first modulus of elasticity between about 12 MPa and 16 MPa, measured at 23° C., and a second portion of a second elastomeric compound having a second modulus of elasticity between about 7 MPa and 11 MPa, measured at 23° C. Additionally, a first tread pattern formed on the first portion is different from a second tread pattern formed on the second portion. A related tread band, method for making an asymmetrical tire, and wheel for a vehicle are also disclosed.
Abstract:
A crosslinkable elastomeric composition includes an elastomeric polymer containing carboxylic groups and an epoxidized liquid organic compound containing epoxide groups located internally on a molecule of the organic compound. The composition is crosslinkable substantially in an absence of additional crosslinking agents. A process for producing tyres for vehicle wheels including the composition, a tyre for vehicle wheels including the composition, a tyre for vehicles with a tread band including the composition, and a crosslinked elastomeric product obtained by crosslinking the composition are also disclosed.
Abstract:
A pneumatic tire for vehicle wheels includes a radial carcass, a tread band, sidewalls and beads, and a belt structure. The tread band is provided with grooves on its surface for coming into contact with the ground and situated on a radial outer surface of the carcass. The sidewalls and beads anchor the tire on a wheel rim. The belt structure is disposed between the tread band and the carcass. Additionally, a fiber-reinforced elastomeric intermediate layer is placed between the belt structure and the tread band. Methods for manufacturing the pneumatic tire are also disclosed.
Abstract:
A method for determining behavior of a viscoelastic material at a first temperature includes performing five or more measurements of a dynamic parameter as a function of deformation at each of at least a second, third, and fourth temperature. Eleven or more data points are chosen from the measurements. Each data point comprises a value of the dynamic parameter, an associated deformation, and an associated temperature. Values of the eleven parameters are determined by inserting at least eleven of the data points into a first equation. The first temperature and the values of the eleven parameters are inserted into the first equation. The dynamic parameter is approximated as a function of the deformation at the first temperature using the first equation. A related apparatus is also disclosed.
Abstract:
A tire having an internal surface includes an electronic device and an anchoring body mounted on the internal surface for engagement between the electronic device and the internal surface of the tire, wherein the anchoring body includes a crosslinked elastomeric material obtained by crosslinking a crosslinkable elastomeric composition including a synthetic diene rubber, preferably in an amount of from 20 to 80 phr, and a halogenated butyl rubber, preferably in an amount of from 80 to 20 phr.
Abstract:
A tyre for motor vehicle wheels, includes a carcass structure including at least one carcass layer, a belt structure applied in a radially outer position with respect to the carcass structure, a tread band applied in a radially outer position with respect to the belt structure, and at least one elastomeric material layer arranged between the carcass structure and the belt structure in which the at least one elastomeric material layer includes inorganic fibres of magnesium and/or aluminium silicates having nanometric dimensions.
Abstract:
A tyre having an internal surface includes an electronic device and an anchoring body mounted on the internal surface for engagement between the electronic device and the internal surface of the tyre, wherein the anchoring body includes a crosslinked elastomeric material obtained by crosslinking a crosslinkable elastomeric composition including a synthetic diene rubber, preferably in an amount of from 20 to 80 phr, and a halogenated butyl rubber, preferably in an amount of from 80 to 20 phr.
Abstract:
A crosslinkable elastomeric composition includes at least one elastomeric polymer including carboxylic groups, and at least one epoxidized elastomeric polymer including greater than or equal to 0.1 mol % and less than or equal to 20 mol % of epoxide groups relative to a total number of moles of monomers present in the at least one epoxidized elastomeric polymer. The composition is crosslinkable in a substantial absence of additional crosslinking agents. A tire for vehicles includes a carcass structure, a belt structure extended coaxially around the carcass structure, and a tread band extended coaxially around the belt structure. The tread band comprises an external rolling surface intended to come into contact with the ground. In one embodiment of the present invention, the tread band includes at least one crosslinked elastomeric material. A process for producing the tire is also disclosed.