摘要:
The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention is a cracking catalyst composition comprising a zeolite in combination with a Lewis Acid containing component, wherein the cracking catalyst composition comprises 0.2% Na2O or less. It has been found that sulfur compounds in hydrocarbon feeds to fluid catalytic cracking processes can be reduced by at least 15% compared to the same composition, which does not comprise the aforementioned Lewis Acid containing component.
摘要:
A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.
摘要:
The present invention is directed to certain catalyst compositions and processes that are capable of reducing sulfur compounds normally found as part of the gasoline fraction streams of fluid catalytic cracking processes. The present invention requires an equilibrium cracking catalyst composition comprises at least one Y-type zeolite having kinetic conversion activity of at least about 3 in combination with a Lewis acid containing alumina composite present in at least 50 weight percent of the composition. The resultant equilibrium catalyst composition has a kinetic conversion activity of at least about 2.
摘要:
The invention is a composition that is suitable for reducing sulfur species from products produced by petroleum refining processes, especially gasoline products produced by fluidized catalytic cracking (FCC) processes. The composition comprises zeolite, yttrium, and at least one element selected from the group consisting of zinc, magnesium and manganese, wherein the yttrium and element are present as cations. The yttrium and zinc are preferably present as cations that have been exchanged onto the zeolite. The zeolite is preferably a zeolite Y.
摘要:
The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophillic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto. Simultaneously, the linker binds the catalytic species to the surface of the support in a manner which permits the catalytic species to be freely available for catalytic activity. Methods of catalyzing a reaction using the supported catalyst system of the invention are also disclosed.
摘要:
The present invention relates to a supported catalyst system. The supported catalyst of the present invention comprises an inorganic support having attached to at least one surface thereof non-acidic, hydrophilic, hydroxyl-containing organic R10 groups having no or substantially no surface charge in solution, and at least one linker capable of binding a catalytic species, e.g. an enzyme or an organometallic molecule, wherein the linker is attached to a catalytic species. The R10 groups preferably are selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —CH(OH)2CH3, —CH2CH(OH)2, —CH(OH)CH2(OH) and mixtures thereof. The presence of the R10 groups on the support surface prevents or reduces non-specific binding of the catalytic species with the support surface by minimizing hydrophobic interactions and providing no or substantially no surface charge in the region of the support having catalytic species attached thereto. Simultaneously, the linker binds the catalytic species to the surface of the support in a manner which permits the catalytic species to be freely available for catalytic activity. Methods of catalyzing a reaction using the supported catalyst system of the invention are also disclosed.
摘要:
The present invention relates to a solid and method useful in separating chemical components in a complex mixture when at least one of the chemical components of the mixture is capable of being selectively adsorbed. The solid of the present invention comprises an inorganic substance and moieties (R10) located on at least one surface of the inorganic substance, wherein said inorganic substance is an inorganic oxide and the surface moiety is selected from the group consisting of —CH2OH, —CH(OH)2, —CH(OH)CH3, —CH2CH2OH, —C(OH)2CH3, —CH2CH(OH)2 and —CH(OH)CH2(OH). Binding moiety, optionally attached to the inorganic substance via a linker, can also be located on the surface of the solid.
摘要:
A catalytic cracking catalyst composition is disclosed that is suitable for reducing the sulfur content of catalytically cracking liquid products, in particularly gasoline products, produced during a catalytic cracking process. Preferably, the catalytic cracking process is a fluidized catalytic cracking (FCC) process. The composition comprises zeolite, zinc and at least one rare earth element having an ionic radius of less than 0.95 Å at a coordination number of 6. Preferably, zinc and the rare earth element are present as cations that have been exchanged on the zeolite. The zeolite is preferably a Y-type zeolite.
摘要:
A process for fluid catalytically cracking a hydrocarbon feedstock containing at least one bio-renewable feed fraction using a rare earth metal oxide-containing, high zeolite-to-matrix surface area ratio catalyst is disclosed. The catalyst comprising a zeolite, preferably a Y-type zeolite, a matrix, at least 1 wt % of a rare earth metal oxide, based on the total weight of the catalyst. The zeolite surface area-to-matrix surface area ratio of the catalyst is at least 2, preferably greater than 2.
摘要:
A membrane process for the removal of sulfur species from a naphtha feed, in particular, a FCC light cat naphtha, without a substantial loss of olefin yield is disclosed. The process involves contacting a naphtha feed stream with a membrane having sufficient flux and selectivity to separate a sulfur deficient retentate fraction from a sulfur enriched permeate fraction, preferably, under pervaporation conditions. Sulfur deficient retentate fractions are useful directly into the gasoline pool. Sulfur-enriched permeate fractions are rich in sulfur containing aromatic and nonaromatic hydrocarbons and are further treated with conventional sulfur removal technologies, e.g. hydrotreating, to reduce sulfur content. The process of the invention provides high quality naphtha products having a reduced sulfur content and a high content of olefin compounds.