摘要:
An electrode, electrochemical cell, and electrochemical processes are disclosed. The electrode is a porous, multi-layered electrode which can have an element in flexible, strip form wound around a central, usually flat plate core, which core may serve as a current distributor. In any form, each layer can be represented by a very thin, highly flexible metal mesh. This can be a fine, as opposed to a coarse, mesh which has extremely thin strands and small voids. The electrode will have an active coating. For utilizing this electrode, the cell in one form will be a monopolar cell providing upward, parallel electrolyte flow through the porous, multi-layered electrode. A representative cell can have such electrode at least substantially filling an electrode chamber. The cells can be contained in a cell box that will provide the desired flow-through relationship for the electrolyte to the electrode. In cell operation, electrochemical processes which can be carried out include metal ion oxidation or reduction, oxidation of organic substituents, nitrate reduction as well as salt splitting.
摘要:
An electrode, electrochemical cell, and electrochemical processes are disclosed. The electrode is a porous, multi-layered electrode which can have an element in flexible, strip form wound around a central, usually flat plate core, which core may serve as a current distributor. In any form, each layer can be represented by a very thin, highly flexible metal mesh. This can be a fine, as opposed to a coarse, mesh which has extremely thin strands and small voids. The electrode will have an active coating. For utilizing this electrode, the cell in one form will be a monopolar cell providing upward, parallel electrolyte flow through the porous, multi-layered electrode. A representative cell can have such electrode at least substantially filling an electrode chamber. The cells can be contained in a cell box that will provide the desired flow-through relationship for the electrolyte to the electrode. In cell operation, electrochemical processes which can be carried out include metal ion oxidation or reduction, oxidation of organic substituents, nitrate reduction as well as salt splitting.
摘要:
An electrode, electrochemical cell, and electrochemical processes are disclosed. The electrode is a porous, multi-layered electrode which can have an element in flexible, strip form wound around a central, usually flat plate core, which core may serve as a current distributor. In any form, each layer can be represented by a very thin, highly flexible metal mesh. This can be a fine, as opposed to a coarse, mesh which has extremely thin strands and small voids. The electrode will have an active coating. For utilizing this electrode, the cell in one form will be a monopolar cell providing upward, parallel electrolyte flow through the porous, multi-layered electrode. A representative cell can have such electrode at least substantially filling an electrode chamber. The cells can be contained in a cell box that will provide the desired flow-through relationship for the electrolyte to the electrode. In cell operation, electrochemical processes which can be carried out include metal ion oxidation or reduction, oxidation of organic substituents, nitrate reduction as well as salt splitting.
摘要:
An electrode, electrochemical cell, and electrochemical processes are disclosed. The electrode is a porous, multi-layered electrode which can have an element in flexible, strip form wound around a central, usually flat plate core, which core may serve as a current distributor. In any form, each layer can be represented by a very thin, highly flexible metal mesh. This can be a fine, as opposed to a coarse, mesh which has extremely thin strands and small voids. The electrode will have an active coating. For utilizing this electrode, the cell in one form will be a monopolar cell providing upward, parallel electrolyte flow through the porous, multi-layered electrode. A representative cell can have such electrode at least substantially filling an electrode chamber. The cells can be contained in a cell box that will provide the desired flow-through relationship for the electrolyte to the electrode. In cell operation, electrochemical processes which can be carried out include metal ion oxidation or reduction, oxidation of organic substituents, nitrate reduction as well as salt splitting.
摘要:
A compound electrode incorporating a lead substrate utilizes the lead as a support structure. This support structure provides a surface that engages a mesh member, e.g., a valve metal expanded metal mesh. The mesh member has a front and back surface with the back surface facing the lead support structure. At least the front surface of the mesh member is an active surface. Securing of the mesh member to the lead support structure in electrical connection permits the lead support structure to serve as a current distributor for the mesh member. The mesh member may engage the surface of the lead support structure as by pressing or rolling the mesh onto the lead. Other engagement means can include the use of fasteners, or welding and the like. The resulting structure can be particularly useful as an electrode assembly for use in an electrolytic cell that serves for the electrowinning of a metal.
摘要:
A compound electrode incorporating a lead substrate utilizes the lead as a support structure. This support structure provides a surface that engages a valve metal expanded metal mesh. The mesh member has a front and back surface with the back surface facing the lead support structure. At least the front surface of the mesh member is an active surface. Securing of the mesh member to the lead support structure in electrical connection permits the lead support structure to serve as a current distributor for the mesh member. The mesh member may engage the surface of the lead support structure by pressing or rolling the mesh onto the lead. Other engagement means can include the use of fasteners, or welding and the like. The resulting structure can be particularly useful as an electrode assembly for use in an electrolytic cell that serves for the electrowinning of a metal.
摘要:
A metal surface is now described having enhanced adhesion of subsequently applied coatings. The substrate metal of the article, such as a valve metal as represented by titanium, is provided with a highly desirable surface characteristic for subsequent coating application. This can be initiated by selection of a metal of desirable metallurgy and heat history, including prior heat treatment to provide surface grain boundaries which may be most readily etched. In subsequent etching operation, the surface is made to exhibit well defined, three dimensional grains with deep grain boundaries. Subsequently applied coatings, by penetrating into the etched intergranular valleys, are desirably locked onto the metal substrate surface and provide enhanced lifetime even in rugged commercial environments.
摘要:
A method of preparing electrodes is now described, which electrodes have enhanced adhesion of subsequently applied coatings combined with excellent coating service life. In the method a substrate metal, such as a valve metal as represented by titanium, is provided with a highly desirable rough surface characteristic for subsequent coating application. This can be achieved by various operations including etching and melt spray application of metal or ceramic oxide to ensure a roughened surface morphology. In subsequent operations: a barrier layer is provided on the surface of enhanced morphology. This may be achieved by operations including heating, as well as including thermal decomposition of a layer precursor. Subsequent coatings provide enhanced lifetime even in the most rugged commercial environments.
摘要:
A metal surface, useful as an electrode in an electrolytic cell, is now described having enhanced adhesion of subsequently applied coatings combined with excellent coating service life. The substrate metal of the electrode, such as a valve metal as represented by titanium, is provided with a highly desirable rough surface characteristic for subsequent coating application. This can be achieved by various operations including etching and melt spray application of metal or ceramic oxide to ensure a roughened surface morphology. Usually in subsequent operations, a barrier layer is provided on the surface of enhanced morphology. This may be achieved by operations including heating, as well as including thermal decomposition of a layer precursor. Subsequent coatings provide enhanced lifetime even in the most rugged commercial environments.
摘要:
A metal surface is now described having enhanced adhesion of subsequently applied coatings. The substrate metal of the article, such as a valve metal as represented by titanium, is provided with a highly desirable surface characteristic for subsequent coating application. This can be achieved by a plasma sprayed coating of well defined surface morphology, the plasma spraying being with one or more metals usually valve metals. The metal of the coating may be the same or different from the metal of the substrate. Subsequently applied coatings, by penetrating into the coating of well defined surface morphology, and desirably locked onto the resulting metal article an provide enhanced lifetime even in rugged commercial environments.