摘要:
A sampled amplitude read channel is disclosed for disk storage systems which asynchronously samples an analog read signal, adaptively equalizes the resulting discrete time sample values according to a target partial response, extracts synchronous sample values through interpolated timing recovery, and detects digital data from the synchronous sample values using a Viterbi sequence detector. To increase the speed of the read channel, the FIR filters in the equalizer and interpolator are implemented according to a residue number system. Further, the residue number system implementation of the FIR filters uses "one-hot" encoding to decrease power dissipation.
摘要:
A sampled amplitude read channel incorporated within a magnetic disk storage system for reading data recorded tracks on a magnetic medium, where the data comprises user data sectors recorded at varying data rates across a plurality of predefined zones and embedded servo data sectors recorded at the same data rate across the zones. The read channel comprises a timing recovery component for synchronous sampling of a read signal from a magnetic read head positioned over the magnetic medium, a gain control component for adjusting the amplitude of the read signal, and a DC offset component for canceling a DC offset in the read signal. These components are dynamically configured to operate according to whether the read channel is processing user data or embedded servo data.
摘要:
A sampled amplitude read channel is disclosed for reading data recorded on a disk storage medium by detecting an estimated binary sequence from a sequence of discrete time sample values generated by sampling pulses in an analog read signal from a read head positioned over the disk storage medium. The read channel comprises a sampling device, such as an analog-to-digital converter (A/D), for sampling the analog read signal to generate the discrete time sample values and for sampling at least one other auxillary analog input signal, such as a servo control signal. In this manner, performance characteristics of the read channel can be measured, such as the driving current applied to the servo control voice coil motor (VCM), without requiring additional hardware.
摘要:
A synchronous read channel is disclosed which samples an analog read signal from a magnetic read head positioned over a magnetic disk medium, computes a DC offset in the sample values in real time, and subtracts the DC offset from the read signal. This attenuates the deleterious affect a DC offset has on the detection algorithm used to detect the recorded data, such as the Viterbi detection algorithm.
摘要:
A sampled amplitude read channel incorporated within a magnetic disk storage system for reading data recorded in concentric tracks on a magnetic medium, where the data comprises user data sectors recorded at varying data rates across a plurality of predefined zones and embedded servo data sectors recorded at the same data rate across the zones. The sampled amplitude read channel comprises a timing recovery component for synchronous sampling of a read signal from a magnetic read head positioned over the magnetic medium, a gain control component for adjusting the amplitude of the read signal, and a DC offset component for cancelling a DC offset in the read signal. These components are dynamically configured to operate according to whether the read channel is processing user data or embedded servo data. A user data frequency synthesizer and a servo data frequency synthesizer lock the timing recovery component to a reference frequency and provide a coarse center frequency control signal corresponding to the user data or servo data mode. The read channel further employs pipelined reads to reduce the physical gap between sectors on the medium. In addition, an improved sync mark detector and an improved asynchronous servo address mark detector increase the accuracy and reliability of the read channel.
摘要:
In a sampled amplitude read channel for magnetic recording, a nonlinear discrete time decimation filter in a negative feed back loop adjusts a DC offset in an analog read signal from a magnetic read head without distorting the read signal. In sampled amplitude recording, adding the samples of an isolated positive pulse to the samples of an isolated negative pulse generates the DC offset of the discrete time sample values. A decimation filter adds the sample values from a positive pulse to the sample values of a negative pulse in order to detect and pass the DC offset in the read signal. The detected discrete time DC offset from the discrete time decimation filter is converted into an analog DC offset signal and subtracted from the analog read signal in a negative feedback loop. A running average decimation filter removes the DC offset during acquisition, and a decision-directed decimation filter removes the DC offset during tracking.
摘要:
A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) that generates an output signal. The frequency of the output signal of the VCO circuitry is adjustable in response to a first control signal and a second control signal. The transmitter path circuitry also includes a first feedback circuitry and a second feedback circuitry that are responsive to the output signal of the VCO circuitry. The first feedback circuitry provides the first control signal to the VCO circuitry. The first control signal coarsely adjusts the frequency of the output signal of the VCO circuitry to a desired frequency. The second feedback circuitry supplies the second control signal to the VCO circuitry. The second control signal fine tunes the frequency of the output signal of the voltage-controlled oscillator circuitry to the desired frequency.
摘要:
A radio-frequency (RF) apparatus capable of transmitting RF signals includes transmitter path circuitry. The transmitter path circuitry includes a voltage-controlled oscillator (VCO) circuitry. The VCO circuitry generates a first signal that has a first frequency. A divider circuitry couples to the VCO circuitry and, in response to the first signal, the divider circuitry generates a second signal that has a second frequency. The frequency of the second signal equals the frequency of the first signal divided by a number.
摘要:
A synchronous read channel is disclosed which samples an analog read signal from a magnetic read head positioned over a magnetic disk medium, filters the sample values according to a desired partial response, extracts timing information from the filtered sample values, and detects an estimated data sequence from the filtered sample values using a discrete time sequence detector. To ensure a small frequency error when timing recovery acquisition mode is entered, the timing recovery phase-lock loop (PLL) is first locked to a nominal read frequency which is the same as the write frequency. This is accomplished by multiplexing the output of the write frequency synthesizer into the timing recovery PLL in a lock-to-reference mode. Thereafter, the analog signal from the read head is multiplexed into the timing recovery PLL in order to acquire the actual frequency and phase of an acquisition preamble recorded prior to the user data.
摘要:
This invention provides apparatus and a method to assist in calibrating a read channel in a magnetic data storage system. More particularly, the invention provides a read channel including a digital noise generator. During a calibration procedure, the digital noise generator injects an analog noise signal into the read channel, thereby increasing the read channel's bit-error rate, and consequently allowing rapid calibration of the read channel. The digital noise generator comprises a number of linear feedback shift registers that together generate a pseudo-random digital word sequence, and a digital-to-analog converter that converts the pseudo-random digital word sequence into the analog noise signal. The digital-to-analog converter comprises a plurality of one-bit digital-to-analog converters whose outputs are summed by an analog adder. This configuration causes the analog noise signal to exhibit a binomial probability distribution which is close to a normal probability distribution for a sufficiently large number of linear feedback shift registers. The linear feedback shift registers are driven by a clock that operates at a higher frequency than the rate at which data is processed in the read channel. The analog noise signal, therefore, has bandwidth that is wider than that of the data, thereby insuring that calibration of the read channel includes effects due to aliasing. The digital noise generator is disabled while the read head passes over synchronization marks and embedded servo wedges.