Abstract:
Prepare a multimodal thermoplastic polymer foam having a distribution of large and small cells in a substantial absence of water by using a blowing agent stabilizer. Multimodal foams of the present invention have blowing agent stabilizer predominantly located proximate to large cells. The resulting multimodal foams have particular utility as thermal insulating materials.
Abstract:
The invention is a bis-BCB compound of the structure: ##STR1## a method for making same and polymers made therefrom. The novel compounds of this invention are useful in preparing polymers that can form thin film coatings for multichip midules (MCMs) and integrated circuits (ICs). These compounds can be isolated as liquids at room temperature, and can form polymers that are hydrophobic and have low dielectrical and dissipative properties.
Abstract:
This invention is directed to a class of arylcyclobutene monomers having the general formula: ##STR1## wherein Ar is aromatic, with the proviso that the carbons of the cyclobutene rings are bonded to adjacent carbon atoms on the same aromatic ring of Ar;and R.sup.1 is a divalent alkyl, cycloaliphatic, aromatic, heteroaromatic, or heterocyclic moiety;polymeric compositions containing these monomers; and articles containing said polymeric compositions.
Abstract:
The invention comprises cyclobutarene ketoaniline monomers and the process for preparing them. The monomers can be used to graft and/or endcap a monomer or polymer having at least 1 amino-reactive functionality. The grafted and/or endcapped monomer or polymer can subsequently be processed to prepare a highly crosslinked network.The preferred monomer has the formula: ##STR1##
Abstract:
A method of forming an air gap within a semiconductor structure by the steps of: (a) using a sacrificial polymer to occupy a space in a semiconductor structure; and (b) heating the semiconductor structure to decompose the sacrificial polymer leaving an air gap within the semiconductor structure, wherein the sacrificial polymer of step (a) is: (a) a copolymer of 5-ethylidene-2-norbornene and vinylbenzocyclobutene (or a vinylbenzocyclobutene derivative); or (b) a copolymer of 5-ethylidene-2-norbornene and 5-(3benzocyclobutylidene)-2-norbornene; or (c) a polymer of 5-(3benzocyclobutylidene)-2-norbornene. In addition, a semiconductor structure, having a sacrificial polymer positioned between conductor lines, wherein the sacrificial polymer is: (a) a copolymer of 5-ethylidene-2-norbornene and vinylbenzocyclobutene (or a vinylbenzocyclobutene derivative); or (b) a copolymer of 5-ethylidene-2-norbornene and 5-(3benzocyclobutylidene)-2-norbornene; or (c) a polymer of 5-(3benzocyclobutylidene)-2-norbornene.
Abstract:
The invention is a compound which comprises an unsaturated cyclic imide moiety and an aryl cyclobutene moiety, wherein the cyclobutene moiety is fused to the aryl radical, and wherein the imide nitrogen is connected to the aryl radical by a direct bond or a bridging member. Another aspect of this invention is a polyimide polymeric composition which results from the polymerization of the above-described compounds.
Abstract:
Monomeric compositions comprising a monomer containing one arylcyclobutane moiety, and a molecular group comprising at least one unsaturated alkyl group are provided.
Abstract:
The present invention provides a process for preparing a stable dispersion of a preformed polymer in a polyol in a single mixer. A preformed polymer is mixed under sufficient heat and shear to reduce its particle size to a desired size in the presence of a polyol. The present invention also provides stable dispersions of polymers in polyols and polyurethane formulations containing stable dispersions made by the process of the present invention.