摘要:
A structure and method for providing an interface with an oxide surface which exhibits both high adhesion and preferred electrical properties. The method involves providing a partial layer of a first material, chosen for its electrical properties, whereby the partial layer has openings through which areas of the oxide surface are exposed. Provision of the partial layer is followed by deposition of a continuous layer of a second material, selected for its preferred physical interface properties, i.e., adhesion. The continuous layer of the second material is deposited over the partial layer including the exposed areas of the oxide surface. The second material will adhere to the exposed areas of oxide, while the first material will provide a discrete interface with the oxide. An embodiment includes a capacitor structure having one or two electrodes abutting a high dielectric thin film, whereby the electrodes comprise first partial layers of metal having favorable electrical properties and second continuous layers adjacent the first partial layers, with the second layer material having been chosen for its physical properties, and wherein the second material adheres to exposed areas of the thin film through openings in the partial metal layer.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may form the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.
摘要:
A structure for providing an interface with an oxide surface which exhibits both high adhesion and preferred electrical properties. An embodiment includes a capacitor structure having one or two electrodes abutting a high dielectric thin film, whereby the electrodes comprise first partial layers of metal having favorable electrical properties and second continuous layers adjacent the first partial layers, with the second layer material having been chosen for its physical properties, and wherein the second material adheres to exposed areas of the thin film through openings in the partial metal layer.
摘要:
High-capacity capacitors and gate insulators exhibiting moderately high dielectric constants with surprisingly low leakage using amorphous or low temperature films of perovskite type oxides including a titanate system material such as barium titanate, strontium titanate, barium strontium titanate (BST), lead titanate, lead zirconate titanate, lead lanthanum zirconate titanate, barium lanthanum titanate, a niobate, aluminate or tantalate system material such as lead magnesium niobate, lithium niobate lithium tantalate, potassium niobate and potassium tantalum niobate, a tungsten-bronze system material such as barium strontium niobate, lead barium niobate, barium titanium niobate, and Bi-layered perovskite system material such as strontium bismuth tantalate, bismuth titanate deposited directly on a silicon surface at temperatures about 450° C. or less.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may form the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.
摘要:
A capacitor and method of making is described incorporating a semiconductor substrate, a bottom electrode formed on or in the substrate, a dielectric layer of barium or lead silicate, and a top electrode. A sandwich dielectric of a barium or lead silicate and a high dielectric constant material such as barium or lead titanate may comprise the dielectric. The silicate layer may be formed by evaporating and diffusing, ion implanting, or electroplating and diffusing barium or lead. The high epsilon dielectric constant material may be formed by sol gel deposition, metal organic chemical vapor deposition or sputtering. The invention overcomes the problem of a bottom electrode and dielectric layer which chemically interact to form a silicon oxide layer in series or below the desired dielectric layer.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
The disclosed method forms a via between metallization layers in a semiconductor structure by patterning an insulator layer overlying a first metallization layer to include a via opening. The method lines the via opening with TaN and Ta liners and then sputter etches the via opening deeper through the TaN and Ta liners into the first metallization layer. After sputter etching, the method then lines the via opening with second TaN and Ta liners. Next, the method deposits a conductor into the via opening, thereby connecting the first and second metallization layers.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.
摘要:
A method of forming an integrated ferroelectric/CMOS structure which effectively separates incompatible high temperature deposition and annealing processes is provided. The method of the present invention includes separately forming a CMOS structure and a ferroelectric delivery wafer. These separate structures are then brought into contact with each and the ferroelectric film of the delivery wafer is bonded to the upper conductive electrode layer of the CMOS structure by using a low temperature anneal step. A portion of the delivery wafer is then removed providing an integrated FE/CMOS structure wherein the ferroelectric capacitor is formed on top of the CMOS structure. The capacitor is in contact with the transistor of the CMOS structure through all the wiring levels of the CMOS structure.