Abstract:
A method for setting a scanning action of at least one LIDAR sensor by a control unit. Measured data of the LIDAR sensor are received, and at least one parameter is ascertained. A scanning action of the LIDAR sensor is adapted, based on the ascertained parameter or in a time-dependent manner. A control unit is also described.
Abstract:
An optical scanning system is described, including a rotor that is set up to rotate about an axis of rotation during a scanning process, an optical lens that is situated on the rotor in such a way that the lens is situated on the axis of rotation, an optical transmit unit that is situated on the rotor and is set up to send out a scanning beam in the direction of an optical axis of the lens, and an optical receive unit that is situated on the rotor and includes a detector that is set up to receive a reflected scanning beam, the detector being situated such that the reflected scanning beam is focused onto the detector by the lens.
Abstract:
A LIDAR system that includes a laser unit, a receiving unit, and a cooling device for generating a cooling airflow. The laser unit, the receiving unit, and the cooling device are situated rotatingly about a rotational axis, so that the cooling airflow for cooling the rotating components is generated by the LIDAR system itself.
Abstract:
The invention relates to a battery retaining device, comprising a guide device which is designed to receive a vehicle battery; at least one retaining element which is designed to rigidly retain a vehicle battery received in the guide device in a mechanical manner up to a first maximum retaining force value in a first operating state and to rigidly retain the vehicle battery received in the guide device in a mechanical manner up to a second maximum retaining force value in a second operating state; and an actuator system with at least one actuator which is designed to bring the at least one retaining element from the first operating state to the second operating state.
Abstract:
A battery management system is configured for use with a battery having at least one battery cell with a cell housing and an electrode winding arranged inside the cell housing. The battery management system includes a battery state detection mechanism. The electrode winding is covered at least partially by a pressure-sensitive film sensor. The battery state detection mechanism is configured to read in a measured value, provided by the pressure-sensitive film sensor, or a variable derived from this measured value. The battery state detection mechanism uses the measured value/variable as an evaluation parameter to determine the battery state. The battery state detection mechanism is configured to determine a swelling force from swelling of the electrode winding due to the state of charge thereof by using the measured value/variable. The swelling force is used to further determine the state of charge or state of health of the battery cell.
Abstract:
A sensor arrangement for detecting a pedal movement in a vehicle includes a measurement value transmitter that is arranged on a piston that is translated by the pedal movement and a measurement value sensor that is arranged in a stationary manner in the movement region of the piston. The measurement value sensor in connection with the measurement value transmitter generates a signal that represents the pedal movement. The measurement value transmitter and the measurement value sensor are configured as inductive sensors. The measurement value transmitter has at least one detection region, and the measurement value sensor has at least one detection coil. The at least one detection region of the measurement value transmitter influences the inductance of the at least one detection coil such that the changing inductance of the at least one detection coil of the measurement value sensor is interpreted as a measure of the pedal movement.
Abstract:
A LIDAR device for optically detecting a field of view. The LIDAR device includes: a control unit for emitting at least one control signal; an electric motor, which has a motor current and is controllably rotatable about a rotational axis with the aid of the at least one control signal, and on which a switchable light source emitting light radiation is situated. The LIDAR device also includes at least one switch for suppressing the emission of the light radiation depending on a behavior of a current variable representing the motor current.
Abstract:
A LIDAR apparatus for scanning a scan region with at least one beam is described. The LIDAR apparatus includes at least one beam source for generating the at least one beam; having a mirror for deflecting the at least one generated beam toward the scan region; and having a detector mirror for deflecting at least one beam, reflected at an object, onto a defined region of a detector, the mirror and the detector mirror being disposed on a rotor rotatably around a vertical rotation axis, and the detector mirror focusing the at least one reflected beam onto the detector. A method for operating a LIDAR apparatus is also described.
Abstract:
A LIDAR device for optically detecting a field of view. The LIDAR device includes: a control unit for emitting at least one control signal; an electric motor, which has a motor current and is controllably rotatable about a rotational axis with the aid of the at least one control signal, and on which a switchable light source emitting light radiation is situated. The LIDAR device also includes at least one switch for suppressing the emission of the light radiation depending on a behavior of a current variable representing the motor current.
Abstract:
A method for scanning solid angles is provided using at least two electromagnetic beams, at least one electromagnetic beam being generated that is subsequently deflected along a horizontal angle and/or along a vertical angle with the aid of a rotatable mirror; the solid angles being scanned using the at least one electromagnetic beam; and at least one reflected electromagnetic beam being received, after being reflected off an object, by a receiving optics that is pivotable along the horizontal angle synchronously with the mirror. Furthermore, a LIDAR device for carrying out the method is provided.