摘要:
A low-dose-rate (LDR) brachytherapy device having a spatiotemporal radiation profile includes an elongated body having a radioactive material in a spatial pattern to provide a spatial radiation profile with a radiation intensity that varies along a length of the elongated body. The radioactive material includes at least first and second radioisotopes having at least first and second respective decay profiles that together provide a temporal radiation profile that is different from the first and second decay profiles. The spatial radiation profile and the temporal radiation profile form a net spatiotemporal radiation profile configured to provide a radiotherapy plan for a patient.
摘要:
A low-dose-rate (LDR) brachytherapy device having a spatiotemporal radiation profile includes an elongated body having a radioactive material in a spatial pattern to provide a spatial radiation profile with a radiation intensity that varies along a length of the elongated body. The radioactive material includes at least first and second radioisotopes having at least first and second respective decay profiles that together provide a temporal radiation profile that is different from the first and second decay profiles. The spatial radiation profile and the temporal radiation profile form a net spatiotemporal radiation profile configured to provide a radiotherapy plan for a patient.
摘要:
A low-dose-rate (LDR) brachytherapy device having a spatiotemporal radiation profile includes an elongated body having a radioactive material in a spatial pattern to provide a spatial radiation profile with a radiation intensity that varies along a length of the elongated body. The radioactive material includes at least first and second radioisotopes having at least first and second respective decay profiles that together provide a temporal radiation profile that is different from the first and second decay profiles. The spatial radiation profile and the temporal radiation profile form a net spatiotemporal radiation profile configured to provide a radiotherapy plan for a patient.
摘要:
An in-ear stimulation device for administering caloric stimulation to the ear canal of a subject includes (a) first and second earpieces configured to be insertable into the ear canals of the subject; (b) at least first and second thermoelectric devices thermally coupled to respective ones of the first and second earpieces; (c) a first heat sink thermally coupled to the first thermoelectric device opposite the first earpiece and a second heat sink thermally coupled to the second thermoelectric device opposite the second earpiece; and (d) a controller comprising a waveform generator in communication with the first and second thermoelectric devices, the waveform generator configured to generate a first control signal to control a first caloric output to the first thermoelectric device and a second control signal to control a second caloric output to the second caloric device.
摘要:
Methods, systems, devices, and computer program products include positioning single-use radiation sensor patches that have adhesive means onto the skin of a patient to evaluate the radiation dose delivered during a treatment session. The sensor patches are configured to be minimally obtrusive and operate without the use of externally extending power cords or lead wires.
摘要:
Methods, systems, devices, and computer program products include positioning single-use radiation sensor patches that have adhesive onto the skin of a patient to evaluate the radiation dose delivered during a medical procedure or treatment session. The sensor patches are configured to be relatively unobtrusive and operate during radiation without the use of externally extending power cords or lead wires.
摘要:
Methods, systems, devices, and computer program products include positioning single-use radiation internal dosimeters with MOSFETs into a patient to evaluate the radiation dose delivered during a medical procedure or treatment session. The MOSFETs can be unpowered during irradiation.
摘要:
Methods, systems, devices and computer program product include: (i) administering a fluorescent analyte to a subject; (ii) repetitively emitting excitation light from an implanted sensor over a desired monitoring period; (iii) detecting fluorescence intensity in response to the excitation light using the implanted sensor that outputs the excitation light; and (iv) using data associated with the detected fluorescence intensity to perform at least one of: (a) calculate the concentration or dose of the analyte received proximate to the implanted sensor site; (b) evaluate the pharmacodynamic or pharmacokinetic activity of the fluorescent analyte; (c) confirm Ab attachment to a tumor site; (d) monitor a non-target site to confirm it is not unduly affected by a therapy; (e) monitor for changes in cellular properties; (f) use the calculated dose or concentration data to adjust or customize a therapeutic amount of the analyte administered to the subject; (g) confirm micelle concentration at a target site and then stimulate toxin release based on the confirmation; and (h) monitor for the expression of a protein produced from a gene therapy modification.In particular embodiments, the intensity of the excitation signals emitted to the localized tissue can be varied in a predetermined manner to generate optical profiling data of the response of the tissue proximate the sensor.
摘要:
Methods, systems, devices and computer program product include: (i) administering a fluorescent analyte to a subject; (ii) repetitively emitting excitation light from an implanted sensor over a desired monitoring period; (iii) detecting fluorescence intensity in response to the excitation light using the implanted sensor that outputs the excitation light; and (iv) using data associated with the detected fluorescence intensity to perform at least one of: (a) calculate the concentration or dose of the analyte received proximate to the implanted sensor site; (b) evaluate the pharmacodynamic or pharmacokinetic activity of the fluorescent analyte; (c) confirm Ab attachment to a tumor site; (d) monitor a non-target site to confirm it is not unduly affected by a therapy; (e) monitor for changes in cellular properties; (f) use the calculated dose or concentration data to adjust or customize a therapeutic amount of the analyte administered to the subject; (g) confirm micelle concentration at a target site and then stimulate toxin release based on the confirmation; and (h) monitor for the expression of a protein produced from a gene therapy modification.In particular embodiments, the intensity of the excitation signals emitted to the localized tissue can be varied in a predetermined manner to generate optical profiling data of the response of the tissue proximate the sensor.
摘要:
Methods, systems, devices, and computer program products include positioning single-use radiation internal dosimeters with MOSFETs into a patient to evaluate the radiation dose delivered during a medical procedure or treatment session. The MOSFETs can be unpowered during irradiation.