摘要:
A performance projection system includes a test IHS and a currently existing IHS. The performance projection system includes surrogate programs and user application software. The test IHS employs a memory that includes a virtual future IHS, currently existing IHS, surrogate programs, and user application software for determination of runtime and HW counter performance data. The user application software and surrogate programs execute on the currently existing MS to provide designers with runtime data and HW counter or microarchitecture dependent data. Designers execute surrogate programs on the future IHS to provide runtime and HW counter data. Designers normalize and weight the runtime and HW counter data to provide a representative surrogate program for comparison to user application software performance on the future IHS. Using a scaling factor, designers may generate a projection of runtime performance for the user application software executing on the future IHS.
摘要:
A performance projection system includes a test IHS and multiple currently existing IHSs. The performance projection system includes user application software and surrogate programs that execute on currently existing IHSs. The performance projection system measures user application software and surrogate program performance during execution on currently existing IHSs. The performance projection systems measures runtime program performance during execution of surrogate programs on a future semiconductor die IC design model or virtualized future system. Designers normalize and compare surrogate program runtime performance data with user application software performance data. Designers un-normalize the normalized runtime performance data to generate a projection of runtime performance on the future system.
摘要:
A performance projection system includes a test IHS and multiple currently existing IHSs. The performance projection system includes user application software and surrogate programs that execute on currently existing IHSs. The performance projection system measures user application software and surrogate program performance during execution on currently existing IHSs. The performance projection systems measures runtime program performance during execution of surrogate programs on a future semiconductor die IC design model or virtualized future system. Designers normalize and compare surrogate program runtime performance data with user application software performance data. Designers un-normalize the normalized runtime performance data to generate a projection of runtime performance on the future system.
摘要:
A performance projection system includes a test IHS and a currently existing IHS. The performance projection system includes surrogate programs and user application software. The test IHS or simulator includes a processor with hardware (HW) counter(s) and an L1 cache. The test IHS employs a memory that includes a virtual future IHS, currently existing IHS, surrogate programs, and user application software for determination of runtime and HW counter performance data. The user application software and surrogate programs execute on the currently existing IHS to provide designers with runtime data and HW counter or microarchitecture dependent data. Designers execute surrogate programs on the future IHS to provide runtime and HW counter data. Designers normalize and weight the runtime and HW counter data to provide a representative surrogate program for comparison to user application software performance on the future IHS. Using a scaling factor, designers may generate a projection of runtime performance for the user application software executing on the future IHS.
摘要:
According to one aspect of the present disclosure a method and technique for managing memory access is disclosed. The method includes setting a memory databus utilization threshold for each of a plurality of processors of a data processing system to maintain memory databus utilization of the data processing system at or below a system threshold. The method also includes monitoring memory databus utilization for the plurality of processors and, in response to determining that memory databus utilization for at least one of the processors is below its threshold, reallocating at least a portion of unused databus utilization from the at least one processor to at least one of the other processors.
摘要:
According to one aspect of the present disclosure a system and computer program product for managing memory access is disclosed. The system includes a plurality of memory controllers each configured to maintain memory databus utilization by a corresponding processor at or below a threshold to maintain memory databus utilization of the system at or below a system threshold. The system also includes a service processor configured to receive memory databus utilization data from the memory controllers and programmed to, in response to determining that memory databus utilization for at least one of the processors is below its threshold, reallocate at least a portion of unused databus utilization from the at least one processor to at least one of the other processors.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.
摘要:
A job scheduler can select a processor core operating frequency for a node in a cluster to perform a job based on energy usage and performance data. After a job request is received, an energy aware job scheduler accesses data that specifies energy usage and job performance metrics that correspond to the requested job and a plurality of processor core operating frequencies. A first of the plurality of processor core operating frequencies is selected that satisfies an energy usage criterion for performing the job based, at least in part, on the data that specifies energy usage and job performance metrics that correspond to the job. The job is assigned to be performed by a node in the cluster at the selected first of the plurality of processor core operating frequencies.