摘要:
A combustor for supporting the catalytic combustion of a gaseous carbonaceous fuel/air combustion mixture contains a catalyst zone in which is disposed a catalyst body comprising at least a first and a second catalyst member and further contains a downstream zone where homogeneous combustion occurs. Each catalyst member is comprised of a carrier body having a catalyst material deposited thereon. The first carrier is made of a silica-magnesia-alumina material comprised primarily of cordierite, mullite and corundum and the second carrier is made of a ceramic fiber matrix material comprising ceramic (alumina-boron oxide-silica) fibers in a silicon carbide matrix.
摘要:
A catalyst bed (30) for a combustor (18) for supporting the catalytic combustion of a gaseous air/fuel (e.g., methane or natural gas) combustion mixture contains an igniter catalyst member (1) upstream of a promoter catalyst member (2). The catalyst members each comprise carrier monoliths, the igniter catalyst member (1) having an igniter catalyst material deposited thereon and the promoter catalyst member (2) having a promoter catalyst material deposited thereon. The igniter catalyst material is distinguished from the promoter catalyst material in one or more of the following ways: the igniter catalyst material may have (a) a higher catalytic activity for combustion of the air/fuel mixture, (b) a lower catalyst deactivation temperature than the promoter catalyst material, and/or (c) the promoter catalyst regeneration temperature range brackets the upper limit of the regeneration temperature range of the igniter catalyst.
摘要:
A combustor for supporting the catalytic combustion of gaseous carbonaceous fuel contains a catalyst zone in which is disposed a catalyst body comprising at least one catalyst member, a separator zone comprising a separator body and a downstream zone where homogeneous combustion occurs. The catalyst member contains a carrier and a catalyst material deposited thereon. The catalyst body may, optionally, contain additional catalyst members downstream of the at least one catalyst member. The separator body contains a carrier-type monolith containing ceramic fibers in a matrix. One of the optional additional catalyst members may also contain such a monolith on which the catalyst composition is disposed.
摘要:
A catalyst member for use in processes for the catalytic combustion of gaseous carbonaceous fuels is made from a stabilized carrier having a plurality of gas flow passages extending therethrough defined by channel walls and a catalyst material disposed on the channel walls, wherein the carrier is stabilized against interaction with the catalyst material. The stabilized carrier may be prepared from a monolith comprising silica, magnesia and alumina that has a coating of alumina on the channel walls and by subjecting the coated monolith to stabilizing conditions. The stabilizing conditions may include exposure to high temperature steam.
摘要:
A catalyst member for use in processes for the catalytic combustion of gaseous carbonaceous fuels is made from a stabilized carrier having a plurality of gas flow passages extending therethrough defined by channel walls and a catalyst material disposed on the channel walls, wherein the carrier is stabilized against interaction with the catalyst material. The stabilized carrier may be prepared from a monolith comprising silica, magnesia and alumina that has a coating of alumina on the channel walls and by subjecting the coated monolith to stabilizing conditions. The stabilizing conditions may include exposure to high temperature steam.
摘要:
A combustor for supporting the catalytic combustion of gaseous carbonaceous fuel contains a catalyst zone in which is disposed a catalyst body comprising at least one catalyst member, a separator zone comprising a separator body and a downstream zone where homogeneous combustion occurs. The catalyst member contains a carrier and a catalyst material deposited thereon. The catalyst body may, optionally, contain additional catalyst members downstream of the at least one catalyst member. The separator body contains a carrier-type monolith containing ceramic fibers in a matrix. One of the optional additional catalyst members may also contain such a monolith on which the catalyst composition is disposed.
摘要:
A catalytic material useful for the abatement of NO.sub.x in a lean environment containing a zeolite material having incorporated therein copper, cobalt and iron as catalytically active species. The catalytically active metals are preferably incorporated into the zeolite by ion exchange and precipitation. The catalytic material may typically contain from about 2.0 to about 8.0 percent copper, from about 1.0 to about 4.0 percent iron and from about 0.25 to about 4.0 percent cobalt by weight of the catalytic material, i.e., by weight of the zeolite material plus the catalytic metals incorporated therein. Optionally, the catalytic material may be admixed with a binder and applied as an adherent coating onto a carrier to be placed in a gas stream containing the nitrogen oxides.
摘要:
A catalytic material useful for the abatement of NO.sub.X in a lean environment containing a zeolite material having incorporated therein copper, cobalt and iron as catalytically active species. The catalytically active metals are preferably incorporated into the zeolite by ion exchange and precipitation. The catalytic material may typically contain from about 2.0 to about 8.0 percent copper, from about 1.0 to about 4.0 percent iron and from about 0.25 to about 4.0 percent cobalt by weight of the catalytic material, i.e., by weight of the zeolite material plus the catalytic metals incorporated therein. Optionally, the catalytic material may be admixed with a binder and applied as an adherent coating onto a carrier to be placed in a gas stream containing the nitrogen oxides.
摘要:
A method for reduction of NOx in a lean gaseous stream includes passing the gaseous stream at a temperature within the NOx sorbing temperature range through a catalyzed trap member having an oxidation catalyst intimately combined with a sorbent material. The sorbed NOx is periodically removed by introducing a combustible component into the gaseous stream and oxidizing it on the trap member to thermally desorb the NOx. The amount of combustible component introduced is limited to maintain the gaseous stream bulk composition lean and to avoid increasing the bulk temperature of the gaseous stream to a temperature which is too high for effective lean NOx abatement treatment. A suitable NOx abatement catalyst is used to reduce the desorbed NOx. Sorbing (trapping) and desorbing periods are alternated, usually in response to the temperature of the gaseous stream, and an apparatus to carry out the process is provided.
摘要:
A NO.sub.x abatement composition comprises a NO.sub.x abatement catalyst and a NO.sub.x sorbent material which are dispersed in proximity to, but segregated from, each other on a common refractory carrier member (10). The NO.sub.x sorbent material comprises a basic oxygenated metal compound and optionally further comprises ceria. The NO.sub.x abatement catalyst contains a catalytic metal component including a platinum metal catalytic component. The catalytic metal component is segregated from the NO.sub.x sorbent material, which may be one or more of metal oxides, metal carbonates, metal hydroxides and mixed metal oxides. At least the catalytic metal component and the NO.sub.x sorbent material must be on, or comprise separate, particles; the particles may either be admixed or may be disposed in separate layers (20a, 20b) on the carrier member (10). A NO.sub.x abatement method employs the composition and includes periodically adjusting the gas being treated between lean and stoichiometric/rich operating cycles.