摘要:
A catalytic material useful for the abatement of NO.sub.x in a lean environment containing a zeolite material having incorporated therein copper, cobalt and iron as catalytically active species. The catalytically active metals are preferably incorporated into the zeolite by ion exchange and precipitation. The catalytic material may typically contain from about 2.0 to about 8.0 percent copper, from about 1.0 to about 4.0 percent iron and from about 0.25 to about 4.0 percent cobalt by weight of the catalytic material, i.e., by weight of the zeolite material plus the catalytic metals incorporated therein. Optionally, the catalytic material may be admixed with a binder and applied as an adherent coating onto a carrier to be placed in a gas stream containing the nitrogen oxides.
摘要:
A catalytic material useful for the abatement of NO.sub.X in a lean environment containing a zeolite material having incorporated therein copper, cobalt and iron as catalytically active species. The catalytically active metals are preferably incorporated into the zeolite by ion exchange and precipitation. The catalytic material may typically contain from about 2.0 to about 8.0 percent copper, from about 1.0 to about 4.0 percent iron and from about 0.25 to about 4.0 percent cobalt by weight of the catalytic material, i.e., by weight of the zeolite material plus the catalytic metals incorporated therein. Optionally, the catalytic material may be admixed with a binder and applied as an adherent coating onto a carrier to be placed in a gas stream containing the nitrogen oxides.
摘要:
A method for reduction of NOx in a lean gaseous stream includes passing the gaseous stream at a temperature within the NOx sorbing temperature range through a catalyzed trap member having an oxidation catalyst intimately combined with a sorbent material. The sorbed NOx is periodically removed by introducing a combustible component into the gaseous stream and oxidizing it on the trap member to thermally desorb the NOx. The amount of combustible component introduced is limited to maintain the gaseous stream bulk composition lean and to avoid increasing the bulk temperature of the gaseous stream to a temperature which is too high for effective lean NOx abatement treatment. A suitable NOx abatement catalyst is used to reduce the desorbed NOx. Sorbing (trapping) and desorbing periods are alternated, usually in response to the temperature of the gaseous stream, and an apparatus to carry out the process is provided.
摘要:
A NO.sub.x abatement composition comprises a NO.sub.x abatement catalyst and a NO.sub.x sorbent material which are dispersed in proximity to, but segregated from, each other on a common refractory carrier member (10). The NO.sub.x sorbent material comprises a basic oxygenated metal compound and optionally further comprises ceria. The NO.sub.x abatement catalyst contains a catalytic metal component including a platinum metal catalytic component. The catalytic metal component is segregated from the NO.sub.x sorbent material, which may be one or more of metal oxides, metal carbonates, metal hydroxides and mixed metal oxides. At least the catalytic metal component and the NO.sub.x sorbent material must be on, or comprise separate, particles; the particles may either be admixed or may be disposed in separate layers (20a, 20b) on the carrier member (10). A NO.sub.x abatement method employs the composition and includes periodically adjusting the gas being treated between lean and stoichiometric/rich operating cycles.
摘要:
A method for reducing gaseous nitrogen oxides present in a gas stream by reaction with a reductant species is practiced by flowing the gas stream under lean NO.sub.X -reducing conditions in contact with a catalytic material containing a catalytically effective amount of a catalytic species, e.g., a platinum group metal, and a reductant storage material, e.g., a zeolite, effective for storing reductant species for reaction with NO.sub.X, and providing an intermittent supply of the reductant to the gas stream. The catalytic material may be prepared in any manner, but one method is to incorporate a catalytically effective amount of the platinum into a template-bearing molecular sieve material, preferably ZSM-5 zeolite, to hinder the platinum from being incorporated into the pores of the molecular sieve material, and then calcining the molecular sieve material, whereby the template is removed from the molecular sieve material after the platinum is incorporated therein. Another method is to add a blocking agent to the molecular sieve material, then incorporate the platinum therein, and then calcine the material to remove the blocking agent. The catalytic material may contain less than about two percent by weight of zeolite plus platinum, e.g., less than about 0.5%, or from about 0.025% to 0.1% or 0.2% platinum.
摘要:
A method for reducing gaseous nitrogen oxides present in a gas stream by reaction with a reductant species is practiced by flowing the gas stream under lean NO.sub.X -reducing conditions in contact with a catalytic material containing a catalytically effective amount of a catalytic species, e.g., a platinum group metal, and a reductant storage material, e.g., a zeolite, effective for storing reductant species for reaction with NO.sub.X, and providing an intermittent supply of the reductant to the gas stream. The catalytic material may be prepared in any manner, but one method is to incorporate a catalytically effective amount of the platinum into a template-bearing molecular sieve material, preferably ZSM-5, to hinder the platinum from being incorporated into the pores of the molecular sieve material, and then calcining the molecular sieve material, whereby the template is removed from the molecular sieve material after the platinum is incorporated therein. Another method is to add a blocking agent to the molecular sieve material, then incorporate the platinum therein, and then calcine the material to remove the blocking agent. The catalytic material may contain less than about two percent by weight of zeolite plus platinum, e.g., less than about 0.5%, or from about 0.025% to 0.1% or 0.2% platinum.
摘要:
A method of at least periodically removing from a lean gaseous stream a sorbable component such as SO.sub.x includes passing the gaseous stream through a trap member having an oxidation catalyst combined with a sorbent material at a temperature within the sorbing temperature range of the sorbent material. The sorbed component is periodically removed by introducing a combustible component into the gaseous stream and oxidizing it on the trap member to thermally desorb the sorbed component. The amount of combustible component introduced is limited to maintain the gaseous stream composition lean, but is sufficient to increase the surface temperature of at least part of the trap member to above the bulk temperature of the gaseous stream. Sorbing and desorbing periods are alternated and a composition and an apparatus to carry out the process is provided.
摘要:
A combustor for supporting the catalytic combustion of a gaseous carbonaceous fuel/air combustion mixture contains a catalyst zone in which is disposed a catalyst body comprising at least a first and a second catalyst member and further contains a downstream zone where homogeneous combustion occurs. Each catalyst member is comprised of a carrier body having a catalyst material deposited thereon. The first carrier is made of a silica-magnesia-alumina material comprised primarily of cordierite, mullite and corundum and the second carrier is made of a ceramic fiber matrix material comprising ceramic (alumina-boron oxide-silica) fibers in a silicon carbide matrix.
摘要:
A catalyst bed (30) for a combustor (18) for supporting the catalytic combustion of a gaseous air/fuel (e.g., methane or natural gas) combustion mixture contains an igniter catalyst member (1) upstream of a promoter catalyst member (2). The catalyst members each comprise carrier monoliths, the igniter catalyst member (1) having an igniter catalyst material deposited thereon and the promoter catalyst member (2) having a promoter catalyst material deposited thereon. The igniter catalyst material is distinguished from the promoter catalyst material in one or more of the following ways: the igniter catalyst material may have (a) a higher catalytic activity for combustion of the air/fuel mixture, (b) a lower catalyst deactivation temperature than the promoter catalyst material, and/or (c) the promoter catalyst regeneration temperature range brackets the upper limit of the regeneration temperature range of the igniter catalyst.
摘要:
A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.