Abstract:
Water softening device includes water softening tank, neutralization tank, and electrolytic tank. Electrolytic tank generates acidic electrolytic water for regenerating weakly acidic cation exchange resin and alkaline electrolytic water for regenerating weakly basic anion exchange resin. Then, water softening device includes an acidic electrolytic water circulation flow path that circulates the acidic electrolytic water through electrolytic tank, first discharge port, water softening tank, and first water intake port in the stated order, and an alkaline electrolytic water circulation flow path that circulates the alkaline electrolytic water through electrolytic tank, second discharge port, neutralization tank, and second water intake port in the stated order.
Abstract:
The present invention provides a process for preparing a functionalised polymeric chromatography medium, which process comprises (I) providing two or more non-woven sheets stacked one on top of the other, each said sheet comprising one or more polymer nanofibres, (II) simultaneously heating and pressing the stack of sheets to fuse points of contact between the nanofibres of adjacent sheets, and (III) contacting the pressed and heated product with a reagent which functionalises the product of step (II) as a chromatography medium.
Abstract:
A filter includes a porous molding, the porous molding being a sintered product of mixed powder containing dry gel powder including an ion exchange resin and thermoplastic resin powder, or a swelled body of the sintered product. When water having an electric resistivity value of 18 MΩ·cm or more is allowed to pass through a space velocity of 1200 hr−1, the electric resistivity value of water after passage is 15 MΩ·cm or more. To provide a filter that can efficiently remove metal ions in a solution to be treated, and easily acquire a solution having an extremely low content of metal ions.
Abstract:
The anion exchange membranes exhibit enhanced chemical stability and ion conductivity when compared with traditional styrene-based alkaline anion exchange membranes. A copolymer backbone is polymerized from a reaction medium that includes a diphenylalkylene and an alkadiene. The copolymer includes a plurality of pendant phenyl groups. The diphenyl groups on the polymer backbone are functionalized with one or more haloalkylated precursor substrates. The terminal halide from the precursor substrate can then be substituted with a desired ionic group. The diphenylethylene-based alkaline anion exchange membranes lack the α-hydrogens sharing tertiary carbons with phenyl groups from polystyrene or styrene-based precursor polymers, resulting in higher chemical stability. The ionic groups are also apart from each other by about 3 to 6 carbons in the polymer backbone, enhancing ion conductivity. These membrane are advantageous for use in fuel cells, electrolyzers employing hydrogen, ion separations, etc.
Abstract:
It is disclosed orange juice products with reduced acidity, a deacidification system and a process for deacidifying orange juices comprising eluting the orange juice to be deacidified on a weak anion exchange resin to lead to a deacidified orange juice after elution; wherein the orange juice to be deacidified has an initial pH (pHi) and is eluted on said resin at a rate (BV/h) such that the deacidified orange juice has a pH (pHd) meeting the criteria: [pHi+(0.1-1)]
Abstract:
The present invention provides novel methods of cell disruption and release of biomolecules from a cell. The invention comprises the use of positively and/or negatively charged microparticles comprising ground resin. It is particularly useful for purification of biomolecules from cell culture.
Abstract:
The invention relates to ion exchangers laden with transition metal hexacyanoferrate complexes, to processes for the production thereof and to the use of these ion exchangers for removal and purification of cesium ions.
Abstract:
An ion exchange membrane of the present invention contains a resin having an amino group and a constitutional unit represented by Formula 1, in which the number of amino groups per dry mass is 0.15 to 2.4 mmol/g. In Formula 1, L1 represents an alkylene group or an alkenylene group, Ra, Rb, Rc, and Rd each independently represent an alkyl group or an aryl group, Ra and Rb and/or Rc and Rd may form a ring by being bonded to each other, n1 and n2 each independently represent an integer of 1 to 10, and X1− and X2− each independently represent an organic or inorganic anion.
Abstract:
ProblemThe present invention provides, in a metal-adsorbing material used for the removal and recovery of a wide range of heavy metals in treated solutions such as industrial waste water, service water, and environmental water, a gel-like metal-adsorbing material having a large amount of metal adsorption and capable of meeting various demands; and also provide a metal adsorbent having a gel-like metal-adsorbing material supported on a porous carrier.Means for ResolutionA metal-adsorbing polymer selected from polyethyleneimine and polyallylamine is crosslinked with a polyglycidyl ether, whereby a gel-like metal-adsorbing material having a large amount of metal adsorption and capable of meeting various demands is produced. Further, a hydrophilic porous carrier is impregnated with a metal-adsorbing polymer, followed by crosslinking with a polyglycidyl ether, whereby a metal adsorbent having a gel-like metal-adsorbing material supported on the porous carrier, which has a large amount of metal adsorption and can meet various demands, is produced.