Abstract:
A method and machine for making a quick change drill assembly that can be snapped into and out of a spring-loaded ball-locking chuck. The assemblies are comprised of standard sized adapters having various sized bores to receive drills having shanks of corresponding interference-fit diameters. Adapters and drills are fed from opposite ends of the machine to positions from which they are interference fit and automatically discharged. The adapters are fed into a storage tube from a feeder bowl and in the storage tube they are selected or rejected according to the direction of the bore. Selected adapters are air driven to a magazine in a retracted position and from which it is movable to a supplying position. In the supplying position the individual adapter is forced into a radially biasing collet in a hydraulic press. The drills are dropped from a hopper into a slot-bar from which they are pushed into a drill collet in alignment with the adapter collet, the drill being held in the collet by a hydraulic clamping mechanism. The drill shank extends outwardly of the collet toward the bore in the adapter and the adapter is then carried in its collet by a hydraulic ram to be interference fit on the end of the drill shank. The drill is then released in its collet and the adapter collet is retracted to withdraw the drill, secured to the adapter, from the drill collet. The assembly is then pushed out of the adapter collet by a hydraulically operated piston so as to fall into a collecting bin.
Abstract:
A workpiece drilling machine includes to be moved to any of several drilling locations along the workpiece. A plurality of indexing detents is formed along the rail coinciding with each drilling location. A cam follower on the drill carriage is engageable with the detents to coarsely position the drill carriage. An index-cancelling device is associated with each detent and controllable by a preprogrammed input device to determine which of the detents is to be available for engagement by the cam follower. The programmed input device has a visual marking thereon corresponding to the information encoded therein and a visually perceptible status readout is controlled by the index-cancelling means to permit visual verification that the index-cancelling devices are arranged in accordance with the desired pattern. An accurately positioned bearing is located at each drilling location and is engaged by a fine-positioning pin mounted on the drill carriage prior to the start of drilling to provide fine positioning of the drill carriage. A workpiece locator device is included that allows the workpiece to be positioned in one of several discrete positions relative to the rail. A clamping system located in the drill carriage clamps the workpiece in position referenced to the drill carriage to eliminate the effects of warp and twist in the workpiece on hole location.
Abstract:
A quick-change system for power feed and positive feed drill motors having quick-change capabilities whereby a nosepiece may be separated from the drill motor employing a quick-release coupling that does not utilize threaded means. The quick-change system utilizes a quick-change nosepiece, chuck and shank adapter means such that the oil line to a fluid inducer remains attached during nosepiece removal.
Abstract:
Articles (14) are moved downwardly along a slideway (52) which includes a stop gate (50). The stop gate (50) is moved into the slideway (52) to stop the article (14). Then an instrument (44) is moved toward the slideway (52) and the article (14) to place the instrument (44) contiguous the article (14). The instrument irradiates the article (14). This radiation excites the elements in the article (14), causing them to give off their own characteristic x-rays. The energy of the characteristic x-rays identifies the elements and possibly also the element's concentration. Following the analysis the instrument (44) is raised and the stop gate (50) is lowered, allowing the article (14) to move forward along the slideway (52). Drill bits (14) are analyzed in this manner to differentiate between drill bits (14) of different hardness but identical geometric characteristics.
Abstract:
A first rotatable conveyor section (16) is positioned axially between upper and lower fixed sections (14,18) of a gravity conveyor. Rotatable conveyor section (16) rotates about an axis extending perpendicular to the conveyor section. A gate (42,44) is provided at each end of the rotatable conveyor section (16). An identification device (84) is positioned upstream of the rotatable conveyor section (16). It identifies the end-to-end orientation of an article (10) which is travelling along the gravity conveyor (12). A computer controls the gates (42,44) and a mechanism (104) for rotating the rotatable conveyor section (16). When an article (10) having an improper end-to-end orientation is encountered, the rotatable conveyor section (16) is rotated 180.degree. for the purpose of reversing the article's orientation. A second rotatable conveyor section (120) is mounted for sideways rotation about an axis which extends longitudinally of the slide conveyor (12). When the identification device (84) identifies the presence of an article (10) which is either too small or too big or for some other reason is not to be further processed in the system, or if a plurality of articles are detected to be travelling together, the conveyor section (120) is rotated sideways to dump the article or articles into a collection pan (140,142) which directs the article or articles into a collection receptacle (144,146).
Abstract:
A frame is positioned about a vertical axis (z). A helical track composed of track sections (72) is supported on the frame and extends about the vertical axis (z). The helical track has a lower entrance end and an upper exit end. An endless conveyor (EC) comprising a series of article carriers (26) moves along an endless path, defined in part by the helical track. A plurality of article receiving receptacles (20) are supported by the frame, radially outwardly from the helical track. A helical ramp is located radially between the helical track and the plurality of article receiving receptacles. A support frame for the receptacles, the helical ramp and the helical track are all of sectional construction and each section is positioned between an adjacent pair of radially extending frame portions. A rotating drive drum is supported for rotation about the vertical axis. The helical track surrounds the drive drum. The drum is driven in steps, equal to the angular spacing of the receptacles. The drum engages the endless conveyor and moves it in steps. The article carriers are spaced apart a distance equal to a step length. Each article carrier is pivotable in position between a carry position and a discharge position. When the carrier is pivoted into its discharger position, the article which it carries falls by gravity onto the ramp and is guided by the ramp into a dedicated receptacle for that particular article.
Abstract:
A walking beam conveyor (54) delivers drill bits (B), one at a time, into a feed position. A pushrod (52) moves a drill bit (B) from the feed position into the nosepiece (36) of a robot arm (28). The drill bit (B) enters the nosepiece (36) shank end first. The shank (84) enters into and is gripped by a collet (38) in the nosepiece (36). A stylus (66) is then lowered down onto the point end portion of the drill bit (B) and the drill bit (B) is rotated about its axis until the stylus (66) drops down to the bottom of the drill bit flute (70). Rotation is immediately stopped and the robot arm (28) is retracted and swung into a position of alignemnt with a drill bit holder (18) of a sharpening machine. The robot arm (28) is then extended to place the drill bit (B) into a collet (C) in the holder (18). The collet (C) is operated to grasp the drill bit (B) and the collet (38) in the nosepiece (36) is operated to release the drill bit (B). The holder (18) then moves in position to in turn move the point of the drill bit (B) into contact with a surface of a rotating grinding wheel (14). The drill bit (B) was rotated while in the nosepiece (36) to in that manner orient the point surfaces of the drill bit for proper contact with the grinding wheel (14). Oversized and undersized drill bits (B), and drill bits (B) with excessive material buildup, are detected and rejected.
Abstract:
A walking beam conveyor (54) delivers drill bits (B), one at a time, into a feed position. A pushrod (52) moves a drill bit (B) from the feed position into the nosepiece (36) of a robot arm (28). The drill bit (B) enters the nosepiece (36) shank end first. The shank (84) enters into and is gripped by a collet (38) in the nosepiece (36). A stylus (66) is then lowered down onto the point end portion of the drill bit (B) and the drill bit (B) is rotated about its axis until the stylus (66) drops down to the bottom of the drill bit flute (70). Rotation is immediately stopped and the robot arm (28) is retracted and swung into a position of alignment with a drill bit holder (18) of a sharpening machine. The robot arm (28) is then extended to place the drill bit (B) into a collet (C) in the holder (18). The collet (C) is operated to grasp the drill bit (B) and the collet (38) in the nosepiece (36) is operated to release the drill bit (B). The holder (18) then moves in position to in turn move the point of the drill bit (B) into contact with a surface of a rotating grinding wheel (14). The drill bit (B) was rotated while in the nosepiece (36) to in that manner orient the point surfaces of the drill bit for proper contact with the grinding wheel (14). Oversized and undersized drill bits (B), and drill bits (B) with excessive material buildup, are detected and rejected.
Abstract:
A walking beam conveyor (54) delivers drill bits (B), one at a time, into a feed position. A pushrod (52) moves a drill bit (B) from the feed position into the nosepiece (36) of a robot arm (28). The drill bit (B) enters the nosepiece (36) shank end first. The shank (84) enters into and is gripped by a collet (38) in the nosepiece (36). A stylus (66) is then lowered down onto the point end portion of the drill bit (B) and the drill bit (B) is rotated about its axis until the stylus (66) drops down to the bottom of the drill bit flute (70). Rotation is immediately stopped and the robot arm (28) is retracted and swung into a position of alignment with a drill bit holder (18) of a sharpening machine. The robot arm (28) is then extended to place the drill bit (B) into a collet (C) in the holder (18). The collet (C) is operated to grasp the drill bit (B) and the collet (38) in the nosepiece (36) is operated to release the drill bit (B). The holder (18) then moves in position to in turn move the point of the drill bit (B) into contact with a surface of a rotating grinding wheel (14). The drill bit (B) was rotated while in the nosepiece (36) to in that manner orient the point surfaces of the drill bit for proper contact with the grinding wheel (14). Oversized and undersized drill bits (B), and drill bits (B) with excessive material buildup, are detected and rejected.
Abstract:
A gravity conveyor (12) delivers drill bits (10) to carrier tubes (24) which are on an endless conveyor. An optical micrometer (22) or the like identifies the drill bits (10), as to shank type, maximum diameter, overall length, helix angle, back taper, number of margins, etc., and produces an identification signal which is directed to a control computer (B). An identified drill bit (10) is delivered into a given carrier tube (24). The computer (B) controls the endless conveyor (EC) to move the conveyor tube (24) into a position adjacent a dedicated receptacle (30) for the identified drill bit (10) which is one of a large number of dedicated receptacles (30) which are arranged in series alongside the path traversed by the endless conveyor (EC).