摘要:
MOS varactor having an entire accumulation and depletion regime of its CV characteristic curve in one bias regime (negative or positive). The MOS varactor may comprise a gate electrode, a well region of semiconductor material having a first conductivity type (e.g., p-type), contact regions to the well region that comprise heavily doped semiconductor material of the first conductivity type (e.g., p+-type), and a Schottky junction formed between the gate and contact regions. The Schottky junction may be formed by spacing the contact regions away from the gate electrode and siliciding the substrate surface. The gate electrode may be formed from semiconductor material of a second conductivity type (e.g., n-type) opposite to the first conductivity type, thus changing the flat band voltage of the MOS varactor and shifting accumulation and depletion regime of the CV characteristic curve in one bias regime, such as the negative bias regime.
摘要:
A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, a dielectric block comprising one or more dielectric layers, a lower plate comprising one or more electrically conductive layer; and a spreader plate comprising one or more electrically conductive layers.
摘要:
A MIM capacitor is formed on a semiconductor substrate having a top surface and including regions formed in the surface selected from a Shallow Trench Isolation (STI) region and a doped well having exterior surfaces coplanar with the semiconductor substrate. A capacitor lower plate is either a lower electrode formed on the STI region in the semiconductor substrate or a lower electrode formed by a doped well formed in the top surface of the semiconductor substrate that may have a silicide surface. A capacitor HiK dielectric layer is formed on or above the lower plate. A capacitor second plate is formed on the HiK dielectric layer above the capacitor lower plate. A dual capacitor structure with a top plate may be formed above the second plate with vias connected to the lower plate protected from the second plate by sidewall spacers.
摘要:
A MIM capacitor is formed on a semiconductor substrate having a top surface and including regions formed in the surface selected from a Shallow Trench Isolation (STI) region and a doped well having exterior surfaces coplanar with the semiconductor substrate. A capacitor lower plate is either a lower electrode formed on the STI region in the semiconductor substrate or a lower electrode formed by a doped well formed in the top surface of the semiconductor substrate that may have a silicide surface. A capacitor HiK dielectric layer is formed on or above the lower plate. A capacitor second plate is formed on the HiK dielectric layer above the capacitor lower plate. A dual capacitor structure with a top plate may be formed above the second plate with vias connected to the lower plate protected from the second plate by side wall spacers.
摘要:
A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, the upper plate having a top surface, a bottom surface and sidewalls; a spreader plate comprising one or more electrically conductive layers, the spreader plate having a top surface, a bottom surface and sidewalls; and a dielectric block comprising one or more dielectric layers the dielectric block having a top surface, a bottom surface and sidewalls, the top surface of the dielectric block in physical contact with the bottom surface of the upper plate, the bottom surface of the dielectric block over the top surface of the spreader plate, the sidewalls of the upper plate and the dielectric block essentially co-planer.
摘要:
A MIM capacitor is formed on a semiconductor substrate having a top surface and including regions formed in the surface selected from a Shallow Trench Isolation (STI) region and a doped well having exterior surfaces coplanar with the semiconductor substrate. A capacitor lower plate is either a lower electrode formed on the STI region in the semiconductor substrate or a lower electrode formed by a doped well formed in the top surface of the semiconductor substrate that may have a silicide surface. A capacitor HiK dielectric layer is formed on or above the lower plate. A capacitor second plate is formed on the HiK dielectric layer above the capacitor lower plate. A dual capacitor structure with a top plate may be formed above the second plate with vias connected to the lower plate protected from the second plate by side wall spacers.
摘要:
A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, a dielectric block comprising one or more dielectric layers, a lower plate comprising one or more electrically conductive layer; and a spreader plate comprising one or more electrically conductive layers.
摘要:
A MIM capacitor device and method of making the device. The device includes an upper plate comprising one or more electrically conductive layers, the upper plate having a top surface, a bottom surface and sidewalls; a spreader plate comprising one or more electrically conductive layers, the spreader plate having a top surface, a bottom surface and sidewalls; and a dielectric block comprising one or more dielectric layers the dielectric block having a top surface, a bottom surface and sidewalls, the top surface of the dielectric block in physical contact with the bottom surface of the upper plate, the bottom surface of the dielectric block over the top surface of the spreader plate, the sidewalls of the upper plate and the dielectric block essentially co-planer.
摘要:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
摘要:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.