Abstract:
The present invention provides a semiconductor structure including a buried resistor with improved control, in which the resistor is fabricated in a region of a semiconductor substrate beneath a well region that is also present in the substrate. In accordance with the present invention, the inventive structure includes a semiconductor substrate containing at least a well region; and a buried resistor located in a region of the semiconductor substrate that is beneath said well region. The present invention also provides a method of fabricating such a structure in which a deep ion implantation process is used to form the buried resistor and a shallower ion implantation process is used in forming the well region.
Abstract:
A method is provided for fabricating a microelectronic chip which includes a passive device such, as an inductor, overlying an air gap. In such method, a plurality of front-end-of-line (“FEOL”) devices are formed in a semiconductor region of the microelectronic chip, and a plurality of stacked interlevel dielectric (“ILD”) layers are formed to overlie the plurality of FEOL devices, the plurality of stacked ILD layers including a first ILD layer and a second ILD layer, where the second ILD layer is resistant to attack by a first etchant which attacks the first ILD layer. A passive device is formed to overlie at least the first ILD layer. Using the first etchant, a portion of the first ILD layer in registration with the passive device is removed to form an air gap which underlies the passive device in registration with the passive device.
Abstract:
A MOS varactor is formed having a gate electrode comprising at least two abutting oppositely doped regions shorted together, in which the two regions are implanted simultaneously with source/drain implants for first and second types of transistor; at least one contact to a lower electrode is also formed simultaneously with the source/drain implants for the first type of transistor; the varactor insulator is formed simultaneously with the gate insulator for one type of transistor; and the lower electrode is formed simultaneously with a well for the first type of transistor, so that no additional mask is required.
Abstract:
A method of a semiconductor device. A substrate is provided. At least one metal wiring level is within the substrate. An insulative layer is deposited on a surface of the substrate. An inductor is formed within the insulative layer using a patterned plate process. A wire bond pad is formed within the insulative layer, wherein at least a portion of the wire bond pad is substantially co-planar with the inductor.
Abstract:
A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
Abstract:
Methods of forming a high dielectric constant dielectric layer are disclosed including providing a process chamber including a holder for supporting a substrate, introducing a first gas comprising a high dielectric constant (Hi-K) dielectric precursor and an oxygen (O2) oxidant into the process chamber to form a first portion of the high dielectric constant dielectric layer on the substrate, and switching from a flow of the first gas to a flow of a second gas comprising the Hi-K dielectric precursor and an ozone (O3) oxidant to form a second portion of the high dielectric constant dielectric layer on the first portion. In an alternative embodiment, another portion can be formed on the second portion using the oxygen oxidant. The invention increases throughput by at least 20% without reliability or leakage degradation and without the need for additional equipment.
Abstract:
A method of a semiconductor device. A substrate is provided. At least one metal wiring level is within the substrate. An insulative layer is deposited on a surface of the substrate. An inductor is formed within the insulative layer using a patterned plate process. A wire bond pad is formed within the insulative layer, wherein at least a portion of the wire bond pad is substantially co-planar with the inductor.
Abstract:
A method for forming a transmission line structure for a semiconductor device includes forming an interlevel dielectric layer over a first metallization level, removing a portion of the interlevel dielectric layer and forming a sacrificial material within one or more voids created by the removal of the portion of the interlevel dielectric layer. A signal transmission line is formed in a second metallization level formed over the interlevel dielectric layer, the signal transmission line being disposed over the sacrificial material. A portion of dielectric material included within the second metallization level is removed so as to expose the sacrificial material, wherein a portion of the sacrificial material is exposed through a plurality of access holes formed through the signal transmission line. The sacrificial material is removed so as to create an air gap beneath the signal transmission line.
Abstract:
An Integrated Circuit (IC) chip with one or more vertical plate capacitors, each vertical plate capacitor connected to circuits on the IC chip and a method of making the chip capacitors. The vertical plate capacitors are formed with base plate pattern (e.g., damascene copper) on a circuit layer and at least one upper plate layer (e.g., dual damascene copper) above, connected to and substantially identical with the base plate pattern. A vertical pair of capacitor plates are formed by the plate layer and base plate. Capacitor dielectric between the vertical pair of capacitor plates is, at least in part, a high-k dielectric.
Abstract:
A polysilicon containing resistor includes: (1) a p dopant selected from the group consisting of boron and boron difluoride; and (2) an n dopant selected from the group consisting of arsenic and phosphorus. Each of the p dopant and the n dopant has a dopant concentration from about 1e18 to about 1e21 dopant atoms per cubic centimeter. A method for forming the polysilicon resistor uses corresponding implant doses from about 1e14 to about 1e16 dopant ions per square centimeter. The p dopant and the n dopant may be provided simultaneously or sequentially. The method provides certain polysilicon resistors with a sheet resistance percentage standard deviation of less than about 1.5%, for a polysilicon resistor having a sheet resistance from about 100 to about 5000 ohms per square.