摘要:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
摘要:
A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device located and formed upon an active region of a semiconductor substrate and at least one of a fuse structure, an anti-fuse structure and a resistor structure located and formed at least in part simultaneously upon an isolation region laterally separated from the active region within the semiconductor substrate. The field effect device includes a gate dielectric comprising a high dielectric constant dielectric material and a gate electrode comprising a metal material. The at least one of the fuse structure, anti-fuse structure and resistor structure includes a pad dielectric comprising the same material as the gate dielectric, and optionally, also a fuse, anti-fuse or resistor that may comprise the same metal material as the gate electrode.
摘要:
Semiconductor structures with dual trench regions and methods of manufacturing the semiconductor structures are provided herein. The method includes forming a gate structure on an active region and high-k dielectric material formed in one or more trenches adjacent to the active region. The method further includes forming a sacrificial material over the active region and portions of the high-k dielectric material adjacent sidewalls of the active region. The method further includes removing unprotected portions of the high-k dielectric material, leaving behind a liner of high-k dielectric material on the sidewalls of the active region. The method further includes removing the sacrificial material and forming a raised source and drain region adjacent to sidewalls of the gate structure.
摘要:
Methods for fabricating a CMOS structure use a first gate stack located over a first orientation region of a semiconductor substrate. A second gate material layer is located over the first gate stack and a laterally adjacent second orientation region of the semiconductor substrate. A planarizing layer is located upon the second gate material layer. The planarizing layer and the second gate material layer are non-selectively etched to form a second gate stack that approximates the height of the first gate stack. An etch stop layer may also be formed upon the first gate stack. The resulting CMOS structure may comprise different gate dielectrics, metal gates and silicon gates.
摘要:
Methods for fabricating a CMOS structure use a first gate stack located over a first orientation region of a semiconductor substrate. A second gate material layer is located over the first gate stack and a laterally adjacent second orientation region of the semiconductor substrate. A planarizing layer is located upon the second gate material layer. The planarizing layer and the second gate material layer are non-selectively etched to form a second gate stack that approximates the height of the first gate stack. An etch stop layer may also be formed upon the first gate stack. The resulting CMOS structure may comprise different gate dielectrics, metal gates and silicon gates.
摘要:
A transistor has a channel region in a substrate and source and drain regions in the substrate on opposite sides of the channel region. A gate stack is formed on the substrate above the channel region. This gate stack comprises an interface layer contacting the channel region of the substrate, and a high-k dielectric layer (having a dielectric constant above 4.0) contacting (on) the interface layer. A Nitrogen rich first metal Nitride layer contacts (is on) the dielectric layer, and a metal rich second metal Nitride layer contacts (is on) the first metal Nitride layer. Finally, a Polysilicon cap contacts (is on) the second metal Nitride layer.
摘要:
An advanced method of patterning a gate stack including a high-k gate dielectric that is capped with a high-k gate dielectric capping layer such as, for example, a rare earth metal (or rare earth like)-containing layer is provided. In particular, the present invention provides a method in which a combination of wet and dry etching is used in patterning such gate stacks which substantially reduces the amount of remnant high-k gate dielectric capping material remaining on the surface of a semiconductor substrate to a value that is less than 1010 atoms/cm2, preferably less than about 109 atoms/cm2.
摘要翻译:提供了一种构图栅极堆叠的先进方法,该栅极堆叠包括用例如含有稀土金属(或稀土类))层的高k栅介质覆盖层封盖的高k栅极电介质。 特别地,本发明提供了一种方法,其中使用湿蚀刻和干蚀刻的组合来构图这样的栅极堆叠,其将残留在半导体衬底的表面上的剩余的高k栅极电介质封盖材料的量基本上减小到值 小于10 10原子/ cm 2,优选小于约10 9原子/ cm 2。
摘要:
A method for improving across-wafer etch uniformity of semiconductor devices in an etching chamber, wherein the method includes: introducing a first flow of gas mixtures from a central gas distribution plate manifold; introducing a second flow of gas mixtures from an auxiliary gas feed; and controlling process parameters including one or more of: duration, power, pressure, and gas flow rates for the first and second flow of gas mixtures; wherein the central gas distribution plate manifold is positioned above the semiconductor wafer; wherein the auxiliary gas feed is positioned around the perimeter of the semiconductor wafer; and wherein the controlling of the process parameters of the central gas distribution plate manifold and the auxiliary gas feed is facilitated by independent controls.
摘要:
A method of forming a wiring structure for an integrated circuit includes the steps of forming a plurality of features in a layer of dielectric material, and forming spacers on sidewalls of the features. Conductors are then formed in the features, being separated from the sidewalls by the spacers. The spacers are then removed, forming air gaps at the sidewalls so that the conductors are separated from the sidewalls by the air gaps. Dielectric layers above and below the conductors may be low-k dielectrics having a dielectric constant less than that of the dielectric between the conductors. A cross-section of each of the conductors has a bottom in contact with the a low-k dielectric layer, a top in contact with another low-k dielectric, and sides in contact only with the air gaps. The air gaps serve to reduce the intralevel capacitance.
摘要:
Methods for fabricating a CMOS structure use a first gate stack located over a first orientation region of a semiconductor substrate. A second gate material layer is located over the first gate stack and a laterally adjacent second orientation region of the semiconductor substrate. A planarizing layer is located upon the second gate material layer. The planarizing layer and the second gate material layer are non-selectively etched to form a second gate stack that approximates the height of the first gate stack. An etch stop layer may also be formed upon the first gate stack. The resulting CMOS structure may comprise different gate dielectrics, metal gates and silicon gates.