摘要:
A blood component collection system with optimization capabilities. In one embodiment, process parameters are derived from an input/configured predetermined blood component yield and which is based upon the maximization of at least one process parameter. Thereafter, the blood component collection procedure is performed with these derived process control parameters. In another embodiment, process parameters are derived from an input total procedure time from a maximized value for at least one of the other process control parameters so as to maximize blood component yield in this fixed time. Thereafter, the blood component collection procedure is performed with these derived parameters.
摘要:
A blood component collection system with optimization capabilities. In one embodiment, process parameters are derived from an input/configured predetermined blood component yield and which is based upon the maximization of at least one process parameter. Thereafter, the blood component collection procedure is performed with these derived process control parameters. In another embodiment, process parameters are derived from an input total procedure time from a maximized value for at least one of the other process control parameters so as to maximize blood component yield in this fixed time. Thereafter, the blood component collection procedure is performed with these derived parameters.
摘要:
A blood component collection system with optimization capabilities. In one embodiment, process parameters are derived from an input/configured predetermined blood component yield and which is based upon the maximization of at least one process parameter. Thereafter, the blood component collection procedure is performed with these derived process control parameters. In another embodiment, process parameters are derived from an input total procedure time from a maximized value for at least one of the other process control parameters so as to maximize blood component yield in this fixed time. Thereafter, the blood component collection procedure is performed with these derived parameters.
摘要:
A blood component collection system is disclosed with optimization capabilities. In one embodiment, process parameters are derived from an input/configured predetermined blood component yield and which is based upon the maximization of at least one process parameters. Thereafter, the blood component collection procedure is performed with these derived process control parameters. In another embodiment, process parameters are derived from an input total procedure time from a maximized value for at least one of the other process control parameters so as to maximize blood component yield in this fixed time. Thereafter, the blood component collection procedure is performed with these derived parameters.
摘要:
A cell separation set for separating blood components, having a cell separation chamber with a first entry section having a wall with an outwardly flared curve, the entry section having an axial length and an inmost maximum diameter perpendicular to the axial length, the axial length being greater than the inmost maximum diameter. The cell separation chamber further comprises a separation section having a wall comprising an inward curve. A transition section between the entry section and the separation section has a wall comprising a second inward curve, the second inward curve being different from said first inward curve. The first curve may be tangent to the second curve at a first junction between the first and second curves and the second curve may be tangent to the third curve at a second junction between the second and third curves.
摘要:
An apparatus for producing blood component products. In one embodiment, a plurality of a predetermined type of blood component is harvested from a source of whole blood. At least two on-line yield determination techniques are utilized to determine the yield of the harvested blood components. One is a predetermined yield prediction technique and the second is a predetermined yield monitoring technique, each of which are individually calibrated in relation to a predetermined off-line yield determination technique. The predetermined yield prediction and monitoring techniques each provide the yield of the harvested blood components and each is then utilized to provide a determined yield. Consequently, when the harvested blood components are packaged the determined yield may be associated therewith, thereby providing a blood component product.
摘要:
Methods, devices and device components are presented for blood processing. Particularly, methods, devices and device components are presented for separating blood into blood components and collecting one or more separated blood components, which reduce the incidence of blood vessel infiltration and enhance donor comfort. In one aspect, the invention provides blood processing methods having a return flow rate which decreases systematically during a return time. In another aspect, the invention provides blood processing methods having a removal flow rate, return flow rate or both which are derived from a subject's total blood volume. In another aspect, the present invention provides blood processing methods wherein the fraction by volume of removed blood corresponding to collected components is selected to optimize blood processing efficiency and enhance the purities of collected blood components.
摘要:
A method for processing blood in an apheresis system is disclosed. The present invention includes selecting a packing factor for separated blood component types in the separation stage(s) of a blood processing vessel. A packing factor is a number that reflects the degree with which the blood component types are packed together in the separation stage(s) and is dependent at least upon the rotational speed and the flow rate into the blood processing vessel. The method further includes providing an apheresis system and operating it under conditions to separate the blood into a plurality of blood component types and achieve the selected packing factor.
摘要:
A method and apparatus for maximizing the total amount of blood processed during an apheresis procedure by optimizing the concentration of anticoagulant in a donor/patient and the associated extracorporeal tubing set is provided. A simplified model of anticoagulant accumulation in a donor/patient's body is used to calculate an optimal anticoagulant infusion rate profile to the donor/patient during a blood processing procedure. A maximum acceptable anticoagulant concentration in the donor/patient acts as an upper limit on the rate at which anticoagulant may be infused to the donor/patient using the optimized infusion rate profile. A minimum acceptable anticoagulant level acts as a lower limit in optimally controlling the anticoagulant concentration in the extracorporeal tubing set. Both the maximum acceptable anticoagulant level in the donor/patient and the minimum acceptable anticoagulant level in the extracorporeal tubing set may be customized for a specific donor/patient thereby allowing the optimized infusion rate profile and the extracorporeal tubing set anticoagulant concentration to be customized for the specific patient.
摘要:
A cell separation set for separating blood components, having a cell separation chamber with a first entry section having a wall with an outwardly flared curve, the entry section having an axial length and an inmost maximum diameter perpendicular to the axial length, the axial length being greater than the inmost maximum diameter. The cell separation chamber further comprises a separation section having a wall comprising an inward curve. A transition section between the entry section and the separation section has a wall comprising a second inward curve, the second inward curve being different from said first inward curve. The first curve may be tangent to the second curve at a first junction between the first and second curves and the second curve may be tangent to the third curve at a second junction between the second and third curves.