Abstract:
Sensor elements are disclosed for the electrochemically analyzing a body fluid, as well as methods of producing and using the same. The sensor elements include an electrically conductive layer structure applied to a non-conductive carrier substrate, where the layer structure includes a continuous base layer of tantalum, niobium or an alloy thereof, and a metallic cover layer formed on the base layer that covers the base layer either over the entire surface or in some regions. The metallic cover layer includes a more noble metal when compared to the base layer.
Abstract:
An automatic apparatus for obtaining and analyzing a blood sample contains a supply of lancets and test strips, which are located alternately on a carrier band. A lancet or alternatively a test strip may be clamped on a holder, which is mounted so it is movable. The movement controller of the holder comprises a three-dimensional control curve and a guide element, which engages at different depths in the control curve as a function of its relative position. The control curve comprises two guide paths, which run on different parallel planes. The contour of the first guide path determines the movement path of the lancet and the contour of the second guide path determines the movement path of the test strip. The test strip executes a transverse offset perpendicular to the puncture axis of the lancet.
Abstract:
This disclosure relates to an analytic test unit for use in a test device for detecting an analyte in a bodily fluid, having at least one test element with a carrier film and a reagent layer, the latter being affixed on the carrier side of the carrier film and it being possible to apply bodily fluid on said reagent layer, wherein the light-transparent carrier film can be positioned in the beam path of a photometric measuring unit for optically scanning the reagent layer. According to this disclosure, it is proposed that the carrier film has a surface, modified by a raised surface structure, for reducing reflections in the beam path of the measuring unit.
Abstract:
A method for producing a membrane ring or test strip ring for a diagnostic test device includes an elongate strip that is divided into segments by cuts running transversely to the longitudinal direction of the strip, where the cuts are made only as far as a residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts (24). The strip is closed by bringing its ends together to form a ring where the cut edges of the cuts running towards the material bridges each enclose an acute angle (α). The ring is inserted into a support structure as a membrane ring or test strip ring for the test device.
Abstract:
A method for making a dry sensor element for an enzymatic determination of an analyte in a body fluid includes providing a substrate, producing a working electrode on the substrate, comprising depositing an active enzymatic electrode layer on a working electrode base structure provided on the substrate, the active enzymatic electrode layer containing an enzyme, producing a counter electrode on the substrate, and producing electric connectors on the substrate connected to the working electrode and the counter electrode, wherein the step of depositing the active enzymatic electrode layer on the working electrode base structure comprises depositing PEDOT:PSS by electropolymerization. A dry sensor element for an enzymatic determination of an analyte in a body fluid is also disclosed.
Abstract:
A lancet magazine is disclosed which includes a housing and a plurality of lancets each of which is enclosed in a sterile chamber of the housing, wherein the chambers each have a puncturing opening which is closed with a foil, wherein the lancets include a sample receiving device for receiving body fluid and the chambers each include a further opening which is closed with a membrane that is permeable to gas and fluid and includes a lower side that faces the lancet and serves to receive body fluid from the sample receiving device and an upper side that serves to transfer body fluid to a test field arranged on the membrane.
Abstract:
This disclosure relates to an analytic test unit for use in a test device for detecting an analyte in a bodily fluid, having at least one test element with a carrier film and a reagent layer, the latter being affixed on the carrier side of the carrier film and it being possible to apply bodily fluid on said reagent layer, wherein the light-transparent carrier film can be positioned in the beam path of a photometric measuring unit for optically scanning the reagent layer. According to this disclosure, it is proposed that the carrier film has a surface, modified by a raised surface structure, for reducing reflections in the beam path of the measuring unit.
Abstract:
A method for manufacturing a device for monitoring at least one body function of a user comprising providing an evaluation unit, providing a sensor unit, aligning a connector portion of the sensor unit next to an electric contact pad of the evaluation unit such that the connector portion faces the electric contact pad, providing at least one anisotropic conductive adhesive between the electric contact pad and the connector portion, and bonding the evaluation unit substrate and the connector substrate together, wherein the electric contact pad and the connector portion are pressed together, and wherein an electric connection of the electric contact pad and the connector portion is created via the anisotropic conductive adhesive.
Abstract:
A method for producing a membrane ring or test strip ring for a diagnostic test device includes an elongate strip that is divided into segments by cuts running transversely to the longitudinal direction of the strip, where the cuts are made only as far as a residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts (24). The strip is closed by bringing its ends together to form a ring where the cut edges of the cuts running towards the material bridges each enclose an acute angle (α). The ring is inserted into a support structure as a membrane ring or test strip ring for the test device.
Abstract:
A lancet magazine is disclosed which includes a housing and a plurality of lancets each of which is enclosed in a sterile chamber of the housing, wherein the chambers each have a puncturing opening which is closed with a foil, wherein the lancets include a sample receiving device for receiving body fluid and the chambers each include a further opening which is closed with a membrane that is permeable to gas and fluid and includes a lower side that faces the lancet and serves to receive body fluid from the sample receiving device and an upper side that serves to transfer body fluid to a test field arranged on the membrane.