摘要:
A piezoelectric ceramic composition and a piezoelectric element in which cracks and chips are not likely to occur during working even if the thicknesses are reduced, are provided. The piezoelectric ceramic composition contains as a primary component, a complex oxide having a perovskite structure, composed of at least Pb, Zr, Ti, Mn, Nb and O, and represented by general formula ABO3, in which the total molar quantity of elements constituting A is smaller than the total molar quantity of elements constituting B, and Si is present as a secondary component at the content of about 0.010 wt % to 0.090 wt %, in terms of SiO2, relative to the primary component.
摘要:
An acoustic wave device includes: a piezoelectric substrate on which an acoustic wave element and an electrode pad connected to the acoustic wave element are formed; a first resin part having a first opening located above a function area in which an acoustic wave is excited by the acoustic wave element and a second opening located above the electrode pad; a second resin part that covers the first opening and has a third opening located above the second opening; and a metal layer formed on the electrode pad in the second opening, the first opening and the second opening being inversely tapered.
摘要:
An optical disk device includes an optical pick-up module including a rotating portion rotating an optical disk; a carriage mounting at least a light source and being provided movably within the optical pick-up module; and a cover having an opening formed thereon, a light being radiated from the light source through the opening toward the outside of the cover; and a tray supporting the optical pick-up module. The tray includes an optical disk attachment region portion opposed to the optical disk and an outside portion provided on an outside of the optical disk attachment region portion. The outside portion has a ledge along its portion adjacent to the circular perimeter of the optical disk. The optical disk, when mounted on the rotating portion, entirely lies between first and second planes, the first plane being defined by the surface of the cover and the second plane being defined by a first of opposing surfaces of the ledge, which first opposing surface is closer to the surface of the cover than is a second of the opposing surfaces of the ledge.
摘要:
A liquid crystal display element driving method or a liquid crystal display device uses a liquid crystal display element having a plurality of pixels constituting a screen; divides a frame period into a plurality of write periods and outputs gate signals to select the pixels sequentially during the write periods; forms each of source signals such that the source signal includes a picture signal and a non-picture signal respectively assigned for the write periods; writes each of the source signals corresponding to the selected pixels to each of the pixels with its polarity being alternated; and displays an image responsive to the source signals on the screen of the liquid crystal display element in such a manner that a transmittivity of liquid crystals of each of the pixels is controlled in accordance with the written source signal, wherein the non-picture signal having a polarity identical to that of the picture signal to be written subsequently is written to the pixels.
摘要:
In a liquid crystal panel in which pseudo dot inversion driving is performed, the occurrence of flicker or vertical and horizontal strings is prevented by preventing an alignment shift between individual layers during the fabrication of a TFT array from producing a difference between the respective abilities of thin-film TFTs to charge adjacent pixels (61, 62). For this purpose, the liquid crystal display panel is constructed such that two TFTs which are enclosed by two adjacent image signal lines (21, 22) and scan signal lines (3) and adjacent to each other along the signal lines (21, 22) have respective source electrodes (71, 72) adjacent to the different image signal lines (21, 22). The source electrodes (71, 72) and drain electrodes (81, 82) of the two TFTs connected to the adjacent pixels (61, 62) are alternately arranged such that variations caused by the alignment shift in the sizes and areas of overlapping portions between the individual layers of the TFTs are equal or the same.
摘要:
A liquid crystal display comprises an array substrate in which a common electrode, a pixel electrode, a scanning signal line, a video signal line and a semiconductor switching element are provided, an opposed substrate, and a liquid crystal layer interposed between the array substrate and opposed substrate. The line width of at least either the common electrode or the pixel electrode is larger than the distance between the common electrode and the pixel electrode. The film thickness of at least one of the common electrode and the pixel electrode is larger than the thickness of at least either the scanning signal line or the video signal line. As a result, an inplane electric field liquid crystal display having a wide viewing angle, high-speed response, and high image quality such as high luminance is provided.
摘要:
One of a pair of substrates with liquid crystals sandwiched therebetween includes a plurality of pixels each of which is provided with a scanning electrode, an image signal electrode, a switching element provided at an intersection of the scanning electrode and the image signal electrode, a pixel electrode connected to the image signal electrode via the switching element, a counter electrode, and a busbar electrically connected to the counter electrode. A portion of the pixel electrode is overlapped with the busbar so as to make up a storage capacitance. A shape of the pixel electrode is altered for each pixel so that a value of the storage capacitance becomes smaller from a feeding side to a termination side. The portion of the pixel electrode overlapped with the busbar so as to make up the storage capacitance is located within the busbar in a plan view of the device.
摘要:
A silicon single crystal wafer for epitaxial growth grown by the CZ method, which is doped with nitrogen and has a V-rich region over its entire plane, or doped with nitrogen, has an OSF region in its plane, and shows an LEP density of 20/cm2 or less or an OSF density of 1×104/cm2 or less in the OSF region, epitaxial wafer utilizing the substrate, as well as methods for producing them and method for evaluating a substrate suitable for an epitaxial wafer. There are provided a substrate for an epitaxial wafer that suppresses crystal defects to be generated in an epitaxial layer when epitaxial growth is performed on a CZ silicon single crystal wafer doped with nitrogen and also has superior IG ability, epitaxial wafer utilizing the substrate, as well as methods for producing them and method for evaluating a substrate suitable for an epitaxial wafer.
摘要翻译:通过CZ法生长的用于外延生长的硅单晶晶片,其掺杂有氮并在其整个平面上具有富V区或掺杂氮,在其平面中具有OSF区,并且显示出LEP密度 在OSF区域中使用20 / cm 2以下的OSF密度或1×10 4 / cm 2以下的OSF密度,利用该基板的外延晶片及其制造方法以及评价适用于外延晶片的基板的方法。 提供了一种用于外延晶片的衬底,其抑制在掺杂氮的CZ硅单晶晶片上进行外延生长时外延层中产生的晶体缺陷,并且还具有优异的IG能力,以及利用衬底的外延晶片 作为其制造方法和评价适用于外延晶片的基板的方法。
摘要:
A single crystal is grown in accordance with a Czochralski method such that the time for passing through a temperature zone of 1150-1080.degree. C. is 20 minutes or less, or such that the length of a portion of the single crystal corresponding to the temperature zone of 1150-1080.degree. C. in the temperature distribution is 2.0 cm or less. Alternatively, the single crystal is grown such that the time for passing through a temperature zone of 1250-1200.degree. C. is 20 minutes or less, or such that the length of a portion of the single crystal corresponding to the temperature zone of 1250-1200.degree. C. in the temperature distribution is 2.0 cm or less. This method decreases both the density and size of so-called grown-in defects such as FPD (100 defects/cm.sup.2 or less), LSTD, and COP (10 defects/cm.sup.2 or less) to thereby enable efficient production of a single crystal having an excellent good chip yield (80% or greater) in terms of oxide dielectric breakdown voltage characteristics.
摘要:
There is disclosed a Czochralski method in which a seed crystal in contact with material melt is pulled, while being rotated, so as to grow a monocrystal, and a part of the crystal being grown is mechanically held during the pulling operation. The crystal is mechanically held in such a way that the weight W(kg) of the crystal satisfies the following Formula (1):W