摘要:
To final polish a finish-polished surface using a final polishing solution whose chief component is a weakly basic aqueous solution that does not contain abrasive grains. During the final polishing, the weakly basic aqueous solution having an alkali concentration that reduces a haze value of a final-polished surface below the haze value of the finish-polished surface of the wafer is used as the chief component of the final polishing solution.
摘要:
A method in which SSDs are reliably reduced while reducing void defects other than the SSDs on a wafer surface, which is essential for an annealed wafer, and ensuring that BMDs serving as gettering source in a bulk are generated, in order to stabilize the quality of the annealed wafer. Considering that annealing a silicon wafer leads to an increase of density (quantity) of deposits associated with oxygen and nitrogen and forming a core of the SSDs, SSDs are decreased by reducing the density (quantity) of the deposits associated with oxygen and nitrogen by controlling three parameters of oxygen concentration, nitrogen concentration and cooling concentration during the process of pulling and growing the silicon single crystal 6 before annealing. Alternatively, SSD is reduced by polishing after annealing.
摘要:
A method is provided capable of universally controlling the proximity gettering structure, the need for which can vary from manufacturer to manufacturer, by arbitrarily controlling an M-shaped distribution in a depth direction of a wafer BMD density after RTA in a nitrogen-containing atmosphere. The heat-treatment method is provided for forming a desired internal defect density distribution by controlling a nitrogen concentration distribution in a depth direction of the silicon wafer for heat-treatment, the method including heat-treating a predetermined silicon wafer used for manufacturing a silicon wafer having a denuded zone in the vicinity of the surface thereof.
摘要:
A method of manufacturing a silicon wafer, an oxygen concentration in a surface layer to be maintained more than a predetermined value while promoting a defect-free layer. Strength of the surface layer can be made higher than that of an ordinary annealed sample as a COP free zone is secured. A method of manufacturing a silicon wafer doped with nitrogen and oxygen, includes growing a single crystal silicon doped with the nitrogen by Czochralski method, slicing the grown single crystal silicon to obtain a single crystal silicon wafer; heat treating the sliced single crystal silicon wafer in an ambient gas including a hydrogen gas and/or an inert gas; polishing the heat treated single crystal silicon wafer, after the heat treatment, such that an obtained surface layer from which COP defects have been removed by the heat treatment is polished away until an outermost surface has a predetermined oxygen concentration.
摘要:
A method of manufacturing a silicon wafer, an oxygen concentration in a surface layer to be maintained more than a predetermined value while promoting a defect-free layer. Strength of the surface layer can be made higher than that of an ordinary annealed sample as a COP free zone is secured. A method of manufacturing a silicon wafer doped with nitrogen and oxygen, includes growing a single crystal silicon doped with the nitrogen by Czochralski method, slicing the grown single crystal silicon to obtain a single crystal silicon wafer; heat treating the sliced single crystal silicon wafer in an ambient gas including a hydrogen gas and/or an inert gas; polishing the heat treated single crystal silicon wafer, after the heat treatment, such that an obtained surface layer from which COP defects have been removed by the heat treatment is polished away until an outermost surface has a predetermined oxygen concentration.
摘要:
A method for growing a silicon crystal by a Czochralsky method, wherein, let a pulling speed be V (mm/min) and an average value of an in-crystal temperature gradient in a pulling axis direction within a temperature range, a silicon melting point to 1350° C., be G (° C./mm), V/G ranges from 0.16 to 0.18 mm2/° C. min between a crystal center position and a crystal outer periphery position, and a ratio G outer/G center of an average value G of an in-crystal temperature gradient in a pulling axis direction within a temperature range, a silicon melting point to 1350° C., at a crystal outer surface to that at a crystal center is set to up to 1.10 to thereby obtain a high-quality perfect crystal silicon wafer. Such a perfect crystal silicon wafer, wherein an oxygen concentration is controlled to up to 13×1017 atoms/cm3, an initial heat treatment temperature is at least up to 500° C. and a temperature is raised at up to 1° C./min at least within 700 to 900° C., thereby making uniform a wafer radial distribution to an arbitrary oxygen precipitation density level.
摘要:
A silicon wafer preferable to a semiconductor device is produced by determining a heat treatment condition hardly causing slip dislocations and heat-treating the silicon wafer under the condition. The resistance is calculated by using a calculation formula used for predicting the slip resistance of the wafer from the density, size, and residual solid-solution oxygen concentration of the oxygen precipitation in the silicon wafer, the state of oxygen precipitation such that heat treatment not causing any slip dislocation can be carried out is designed, and thus a silicon wafer heat treatment method under the heat treatment condition not causing any slip dislocation is determined. A silicon wafer heat-treated under such a condition can be provided.
摘要:
A method is provided capable of universally controlling the proximity gettering structure, the need for which can vary from manufacturer to manufacturer, by arbitrarily controlling an M-shaped distribution in a depth direction of a wafer BMD density after RTA in a nitrogen-containing atmosphere. The heat-treatment method is provided for forming a desired internal defect density distribution by controlling a nitrogen concentration distribution in a depth direction of the silicon wafer for heat-treatment, the method including heat-treating a predetermined silicon wafer used for manufacturing a silicon wafer having a denuded zone in the vicinity of the surface thereof.
摘要:
A silicon wafer preferable to a semiconductor device is produced by determining a heat treatment condition hardly causing slip dislocations and heat-treating the silicon wafer under the condition. The resistance is calculated by using a calculation formula used for predicting the slip resistance of the wafer from the density, size, and residual solid-solution oxygen concentration of the oxygen precipitation in the silicon wafer, the state of oxygen precipitation such that heat treatment not causing any slip dislocation can be carried out is designed, and thus a silicon wafer heat treatment method under the heat treatment condition not causing any slip dislocation is determined. A silicon wafer heat-treated under such a condition can be provided.
摘要:
A method in which SSDs are reliably reduced while reducing void defects other than the SSDs on a wafer surface, which is essential for an annealed wafer, and ensuring that BMDs serving as gettering source in a bulk are generated, in order to stabilize the quality of the annealed wafer. Considering that annealing a silicon wafer leads to an increase of density (quantity) of deposits associated with oxygen and nitrogen and forming a core of the SSDs, SSDs are decreased by reducing the density (quantity) of the deposits associated with oxygen and nitrogen by controlling three parameters of oxygen concentration, nitrogen concentration and cooling concentration during the process of pulling and growing the silicon single crystal 6 before annealing. Alternatively, SSD is reduced by polishing after annealing.