摘要:
A packaging device for holding thereon a plurality of semiconductor devices to be inspected on an inspection device including a probe to be electrically connected to an electrode of each of the semiconductor devices, comprises, holes for respectively receiving detachably therein the semiconductor devices to keep a positional relationship among the semiconductor devices and a positional relationship between the packaging device and each of the semiconductor devices constant with a spacing between the semiconductor devices, in a direction perpendicular to a thickness direction of the semiconductor devices, and electrically conductive members adapted to be connected respectively to the electrodes of the semiconductor devices, and extending to an exterior of the packaging device so that the probe is connected to each of the electrically conductive members.
摘要:
A packaging device for holding thereon a plurality of semiconductor devices to be inspected on an inspection device including a probe to be electrically connected to an electrode of each of the semiconductor devices, comprises, holes for respectively receiving detachably therein the semiconductor devices to keep a positional relationship among the semiconductor devices and a positional relationship between the packaging device and each of the semiconductor devices constant with a spacing between the semiconductor devices, in a direction perpendicular to a thickness direction of the semiconductor devices, and electrically conductive members adapted to be connected respectively to the electrodes of the semiconductor devices, and extending to an exterior of the packaging device so that the probe is connected to each of the electrically conductive members.
摘要:
The conventional semiconductor element testing equipment is arranged to position each probe accurately and need a burdensome operation for fixing, and includes only a limited number of electrode pads and chips to be tested at a batch. An equipment for testing a semiconductor element is arranged to keep each of electrode pads formed on a semiconductor element to be tested in direct contact with each of probes formed on a first substrate composed of silicon, one of electric connecting substrates disposed in the equipment. On the first substrate, each probe is formed on a cantilever and a wire is routed from a tip of each probe along a tip of the cantilever to the electrode pad formed on an opposite surface to the probe forming surface through an insulating layer.
摘要:
A method for manufacturing a semiconductor device includes forming an integrated circuit on a surface of a wafer and testing electric characteristic of the integrated circuit. The testing includes positioning each of probes of a semiconductor testing equipment and each of electrodes of a tested semiconductor element with each other, and allowing each of the probes to come into contact with each of the electrodes. The semiconductor testing equipment includes a first substrate having a cantilever, the probes being formed on the cantilever of the first substrate, and wires for electrically connecting the probes to electrode pads which are formed on an opposite side of the first substrate to a side on which the probes are formed. Each of the wires has a region arranged on an insulating layer, which is formed on the cantilever, on the opposite side.
摘要:
A semiconductor inspection apparatus which is possible to inspect a plurality of semiconductor devices collectively at one time, which has conventionally been difficult because of precision or the like of probes. A method of manufacturing the semiconductor inspection apparatus comprises the steps of forming a cover film on a surface of the silicon substrate and forming a plurality of probes of a polygonal cone shape or a circular cone shape through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a beam or a diaphragm for each probe through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a through hole corresponding to the probe through etching after patterning by photolithography, and after the cover film is removed, forming an insulating film on the surface of the silicon substrate, forming a metal film on a surface of the insulating film, and forming a wiring lead through etching after patterning by photolithography.
摘要:
A semiconductor inspection apparatus which is possible to inspect a plurality of semiconductor devices collectively at one time, which has conventionally been difficult because of precision or the like of probes. A method of manufacturing the semiconductor inspection apparatus comprises the steps of forming a cover film on a surface of the silicon substrate and forming a plurality of probes of a polygonal cone shape or a circular cone shape through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a beam or a diaphragm for each probe through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a through hole corresponding to the probe through etching after patterning by photolithography, and after the cover film is removed, forming an insulating film on the surface of the silicon substrate, forming a metal film on a surface of the insulating film, and forming a wiring lead through etching after patterning by photolithography.
摘要:
A semiconductor inspection apparatus which is possible to inspect a plurality of semiconductor devices collectively at one time, which has conventionally been difficult because of precision or the like of probes. A method of manufacturing the semiconductor inspection apparatus comprises the steps of forming a cover film on a surface of the silicon substrate and forming a plurality of probes of a polygonal cone shape or a circular cone shape through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a beam or a diaphragm for each probe through etching after patterning by photolithography, after the cover film is removed, again forming a cover film on the surface of the silicon substrate and forming a through hole corresponding to the probe through etching after patterning by photolithography, and after the cover film is removed, forming an insulating film on the surface of the silicon substrate, forming a metal film on a surface of the insulating film, and forming a wiring lead through etching after patterning by photolithography.
摘要:
Semiconductor device chips manufacturing and inspecting method is disclosed in which a semiconductor wafer is cut into individual LSI chips. The LSI chips are rearranged and integrated into a predetermined number. The cut LSI chips are integrated in a jig having openings with a size commensurate with the dimensions of the LSI chip. At least one part of the jig having such openings has a coefficient of thermal expansion that is approximately equal to that of the LSI chips. The integrated predetermined number of chips are subjected to an inspection process in a subsequent inspection step thereby improving efficiency and reducing cost.
摘要:
In an electric characteristic testing process corresponding to a process of the semiconductor apparatus manufacturing processes, in order to test a large area of the electrode pad of the body to be tested in a lump, an electric characteristic testing is performed by pressing a testing structure provided with electrically independent projections having a number equal to a number of conductor portions to be tested formed on an area to be tested of a body to be tested to the body to be tested.
摘要:
In an electric characteristic testing process corresponding to a process of the semiconductor apparatus manufacturing processes, in order to test a large area of the electrode pad of the body to be tested in a lump, an electric characteristic testing is performed by pressing a testing structure provided with electrically independent projections having a number equal to a number of conductor portions to be tested formed on an area to be tested of a body to be tested to the body to be tested.