Abstract:
In one embodiment, a polymeric sheet, comprising: a foamed layer comprising a polymeric material, wherein the polymeric material has a Tg of greater than or equal to 100° C.; and wherein the sheet has a weight reduction of 10% to 60%, as compared to a solid sheet of the same geometry and size formed from the same polymeric material. The sheet, at the thickness of 1.0 mm, has a smoke density of less than or equal to 200 particles after four minutes of burning according to ASTM E662-06. The sheet is thermoformable.
Abstract:
In one embodiment, a polymeric sheet, comprising: a foamed layer comprising a polymeric material, wherein the polymeric material has a Tg of greater than or equal to 100° C.; and wherein the sheet has a weight reduction of 10% to 60%, as compared to a solid sheet of the same geometry and size formed from the same polymeric material. The sheet, at the thickness of 1.0 mm, has a smoke density of less than or equal to 200 particles after four minutes of burning according to ASTM E662-06. The sheet is thermoformable.
Abstract:
In one embodiment, a multiwall sheet can comprise: a first wall; a second wall; an intermediate wall disposed between the first wall and the second wall; a first set of ribs disposed between the first wall and the intermediate wall; a second set of ribs disposed between the second wall and the intermediate wall; a cavity disposed between adjacent ribs; wherein the multiwall sheet is configured to expand and/or collapse when a mechanical force (preferably shear force) is applied to the intermediate wall. Preferably the multiwall sheet has a flexural rigidity of greater than or equal to 10 N/mm.
Abstract:
In one embodiment, a multiwall sheet can comprise: a first wall; a second wall; an intermediate wall disposed between the first wall and the second wall; a first set of ribs disposed between the first wall and the intermediate wall; a second set of ribs disposed between the second wall and the intermediate wall; a cavity disposed between adjacent ribs; wherein the multiwall sheet is configured to expand and/or collapse when a mechanical force (preferably shear force) is applied to the intermediate wall. Preferably the multiwall sheet has a flexural rigidity of greater than or equal to 10 N/mm.
Abstract:
A viewing panel (30, 40, 50, 60, 70, 80) for a domestic appliance includes a substrate (33, 43, 53, 63, 73, 83) and a conductive layer (35, 45, 55, 65, 75, 85) disposed on the substrate; the conductive layer having conductive lines (31, 41, 51, 61, 71, 81) forming a pattern. The substrate contains a polymeric material; the conductive lines have a height (H) of 0.5 micrometers to 10 micrometers determined by an Olympus MX61 microscope; and the pattern has an average pore area of 0.008 square millimeters to 0.06 square millimeters determined by an Olympus MX61 microscope. The viewing panel has: a total transmission of greater than 70% of light having a wavelength in the range of 360 nanometers to 750 nanometers; and an electromagnetic shielding efficiency of greater than 30 dB at 2.45 GHz.