Abstract:
A sheet is described. The sheet has at least one substrate and at least one coating, which reflects thermal radiation, on at least one surface of the substrate, wherein the coating on the substrate contains at least one adhesion layer, a functional layer containing at least one transparent, electrically conductive oxide, above the adhesion layer, a dielectric barrier layer, for regulating oxygen diffusion, above the functional layer, and an antireflection layer above the barrier layer, wherein the barrier layer has a thickness from 10 nm to 40 nm.
Abstract:
A method for cleaning and drying a transparent pane is described. The method uses a hydrophobic coating in order to wipe off the residual moisture, wherein the quantity of water on the outside of the pane is measured after the vehicle engine has been switched off and, in the event of a constant or decreasing quantity of water, at least one wiping operation is carried out after a waiting time of at least 1 minute. A device for cleaning and drying the transparent pane is also described.
Abstract:
The invention relates to a glazing comprising a transparent glass substrate containing ions of at least one alkali metal and a transparent layer mad of silicon oxycarbide (SiOxCy) having a total thickness E with (a) a carbon-rich deep zone, extending from a depth P3 to a depth P4, where the C/Si atomic ratio is greater than or equal to 0.5, and (b) a carbon-poor surface zone, extending from a depth P1 to a depth P2, where the C/Si atomic ratio is less than or equal to 0.4, with P1
Abstract:
A composite pane is described. The composite pane has a first pane, at least one intermediate layer, a second pane, a transparent, electrically conductive first coating between the intermediate layer and the first pane and/or between the intermediate layer and the second pane, a first busbar and a second busbar, and a transparent, electrically conductive second coating.
Abstract:
A process for manufacturing a hydrophobic glazing by: (i) forming a carbon-rich SiOxCy layer at a surface of a mineral glass substrate via CVD by contacting the surface with a stream containing C2H4, SiH4, and CO2 with an C2H4/SiH4 ratio of less than or equal to 3.3 by volume, at a temperature of between 600° C. and 680° C.; (ii) forming a SiO2 layer or a carbon-poor silicon oxycarbide layer with a mean C/Si ratio of less than 0.2 on the carbon-rich SiOxCy layer, thereby obtaining a layered substrate; (iii) annealing and/or shaping the layered substrate at a temperature of between 580° C. and 700° C.; (iv) activating the SiO2 layer or the carbon-poor silicon oxycarbide layer by plasma treatment or acidic or basic chemical treatment; and (v) grafting, by covalent bonding, a fluorinated hydrophobic agent to the surface of the SiO2 layer or the carbon-poor silicon oxycarbide layer.
Abstract:
A vehicle window for separating a vehicle interior from outer surroundings, includes glass pane with a light guide body made of glass on a region of the interior-side surface of the glass pane, wherein the surface of the light guide body facing the glass pane and the surface facing away from the glass pane enclose a wedge angle such that the thickness of the light guide body decreases in the direction from a lower edge to an upper edge of the glass pane, wherein the light guide body is secured to the interior-side surface of the glass pane by means of laser welding.
Abstract:
The present invention relates to a pane with thermal radiation reflecting coating, comprising a substrate (1) and at least one thermal radiation reflecting coating (2) on at least one of the surfaces of the substrate (1), wherein the coating (2), proceeding from the substrate (1), comprises at least one lower dielectric layer (3), one functional layer (4) that contains at least one transparent, electrically conductive oxide, and one upper dielectric layer (5), and wherein at least one darkening layer (10) is arranged below the lower dielectric layer (3), between the lower dielectric layer (3) and the functional layer (4), between the functional layer (4) and the upper dielectric layer (5), and/or above the upper dielectric layer (5), and wherein the darkening layer (10) contains at least one metal, one metal nitride, and/or one metal carbide with a melting point greater than 1900° C. and a specific electrical resistivity less than 500 μohm*cm.
Abstract:
A sheet is described. The sheet has at least one substrate and at least one coating, which reflects thermal radiation, on at least one surface of the substrate, wherein the coating on the substrate contains at least one adhesion layer, a functional layer containing at least one transparent, electrically conductive oxide, above the adhesion layer, a dielectric barrier layer, for regulating oxygen diffusion, above the functional layer, and an antireflection layer above the barrier layer, wherein the barrier layer has a thickness from 10 nm to 40 nm.
Abstract:
The invention relates to a glazing comprising a transparent glass substrate containing ions of at least one alkali metal and a transparent layer made of silicon oxycarbide (SiOxCy) having a total thickness E with (a) a carbon-rich deep zone, extending from a depth P3 to a depth P4, where the C/Si atomic ratio is greater than or equal to 0.5, and (b) a carbon-poor surface zone, extending from a depth P1 to a depth P2, where the C/Si atomic ratio is less than or equal to 0.4, with P1
Abstract translation:本发明涉及一种玻璃,其包括含有至少一种碱金属的离子的透明玻璃基板和由总厚度为E的碳氧化硅(SiO x C y)制成的透明层,(a)富碳深层,从深度 P3至深度P4,其中C / Si原子比大于或等于0.5,以及(b)从深度P1延伸到深度P2的碳贫表面区,其中C / Si原子比为 小于或等于0.4,P1
Abstract:
A method for cleaning and drying a transparent pane is described. The method uses a hydrophobic coating in order to wipe off the residual moisture, wherein the quantity of water on the outside of the pane is measured after the vehicle engine has been switched off and, in the event of a constant or decreasing quantity of water, at least one wiping operation is carried out after a waiting time of at least 1 minute. A device for cleaning and drying the transparent pane is also described.