Abstract:
The invention proceeds from a method for operating a wiper device (10) of a vehicle (26), which wiper device has at least one wiper arm (12, 12′) for holding a wiper blade (14, 14′), in particular an aero wiper blade, at least one wiper drive (16) for driving the wiper arm (12, 12′) and at least one computer unit (18) for controlling a wiping movement of the wiper arm (12, 12′) using the wiper drive (16), wherein the computer unit (18) has a memory unit (20) in which a park position (22), which is associated with a position of the wiper drive (16), is stored. The invention proposes that the computer unit (18) corrects the park position (22) as a function of a speed of the vehicle (26) in at least one adjustment step (24), wherein a corrected park position (28) lies, in particular in an incident-flow region of the wiper blade (14, 14′).
Abstract:
A wiper washer control apparatus includes an ignition sensor, a shift position sensor, a wiper driving unit, a washer spraying unit, a wiper lever detection unit, and a wiper washer control unit. The wiper washer control unit changes a control to be performed by the wiper driving unit to a delay mode when receiving information indicating that the traveling driver is in the started state from the ignition sensor, receiving information indicating that a shift position is in a parking range from the shift position sensor, and receiving information indicating that the delay mode is to be started from the wiper lever detection unit. The wiper washer control unit changes the control to be performed by the wiper driving unit to a spray mode when receiving, in the delay mode, information indicating that the spray mode is to be started from the wiper lever detection unit.
Abstract:
A system includes a dome, a wiper assembly, a position sensor and a control device. The wiper assembly includes a wiper blade configured to rotate around the dome. The position sensor may be configured to send a signal to a control device when a wiper blade passes the position sensor. The control device may include one or more processors configured to receive the signal from the position sensor and determine a location of the wiper blade relative to the dome based on the received signal.
Abstract:
A system includes a dome, a wiper assembly, a position sensor and a control device. The wiper assembly includes a wiper blade configured to rotate around the dome. The position sensor may be configured to send a signal to a control device when a wiper blade passes the position sensor. The control device may include one or more processors configured to receive the signal from the position sensor and determine a location of the wiper blade relative to the dome based on the received signal.
Abstract:
A windshield wiper assembly for a dual sweep angle and indexable wiper system is provided. The system includes a wiper motor and a wiper arm for sweeping a surface of a windshield coupled to a first eccentric, the first eccentric comprising a primary eccentric and an indexable eccentric plate, wherein the indexable eccentric plate determines an eccentric offset of the wiper arm coupled to the first eccentric. The system further includes an output wiper shaft coupled to the wiper arm, a second eccentric coupled to a cam shaft, and a link coupled to the first eccentric and the second eccentric, the link having a first effective link arm length between the first eccentric and the second eccentric for driving the first eccentric to operate the wiper arm when operated in a first direction.
Abstract:
Provided is a vehicle wiper device including (i) a first motor that includes a first output shaft, that rotates the first output shaft to rotate a wiper arm back and forth about a pivot point of the wiper arm, and that causes a wiper blade coupled to a leading end portion of the wiper arm to perform a back and forth wiping operation between an upper return position and a lower return position on a windshield, (ii) a second motor that changes a wiping range on the windshield by the wiper blade, (iii) a rotation angle detector that detects a rotation angle of the first output shaft, and (iv) a controller that controls the second motor according to a rotation angle of the first output shaft detected by the rotation angle detector in a state in which a broad field of view should be secured on a front passenger seat side.
Abstract:
Automatic wiper control prohibiting means prohibits execution of automatic wiper control when vehicle stop detecting means detects that a vehicle is stopping and a masking object detecting part determines that a masking object is adhered to an outer surface of a window part. When the vehicle stop detecting means detects that the vehicle is stopping and a state of the masking object detecting part is changed from a state where the masking object detecting part detects that the masking object is adhered to the outer surface of the window part to a state where the masking object detecting part detects that the masking object is not adhered to the outer surface of the window part at a changing time, the automatic wiper control prohibiting means prohibits the execution of said automatic wiper control for a predetermined period of time from the changing time.
Abstract:
A windshield wiper system for an aircraft is provided and includes a motor, an output shaft, a wrap spring and crank rocker mechanism (WSCRM) to which the motor and the output shaft are coupled and a controller. By way of the WSCRM, first directional rotation input to the WSCRM from the motor via a two-stage gear reduction is converted such that the output shaft drives wiper blade oscillation through a first sweep angle and second directional rotation input to the WSCRM from the motor is converted such that the output shaft drives wiper blade oscillation through a second sweep angle. The controller is configured to control the motor such that the first directional rotation is continuously or non-continuously input during first or second flight conditions, respectively, and the second directional rotation is continuously input during third flight conditions.
Abstract:
A brushless motor comprises: a stator 21 having armature coils 21a, 21b, and 21c; a rotor 22 which is rotated by a revolving magnetic field; and a switching element 30a, wherein the brushless motor has a rotation number control unit 33 which switches between low-speed and high-speed mode, wherein in the low-speed mode, the rotation number control unit 33 supplies current to the armature coils 21a, 21b, and 21c at predetermined energization timing and controls a duty ratio to control the rotation number of the rotor 22, and in the high-speed mode, the rotation number control unit 33 supplies current to the armature coils 21a, 21b, and 21c at energization timing advanced from the energization timing for the low-speed mode, thereby performing field weakening control of weakening the revolving magnetic field from that of the low-speed mode to control the rotation number of the rotor 22.
Abstract:
The invention relates to a control device (160) for a drive unit (120) of a vehicle windshield wiper system (100) comprising at least one wiper arm (140). The control device (160) is designed to determine a load quantity (L) of the drive unit (120) and to set the wiping frequency (WH) of the wiper arm (140) on the basis of the ratio of the load quantity (L) to at least one load threshold value (LS). Furthermore, the control device (160) is designed to set the wiping frequency (WH) depending on the current speed (v) of the vehicle.