Abstract:
A capacitor includes a body including a plurality of dielectric layers, first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween, and first and second insulating regions. The first insulating region is disposed in each of the first internal electrodes and includes a first connection electrode disposed therein. The second insulating region is disposed in each of the second internal electrodes and includes a second connection electrode disposed therein. The products D1×Td and D2×Td are greater than 20 μm2, where Td is a thickness of the dielectric layer, and D1 and D2 are widths of the first and second insulating regions, respectively.
Abstract:
A power supply may include a control signal generating unit outputting a control signal in response to a load information signal input thereto, a controlling unit activating and outputting a first gate signal or activating and outputting first and second gate signals in response to the control signal, a first power factor correction unit operating in response to the first gate signal, and a second power factor correction unit operating in response to the second gate signal.
Abstract:
A capacitor component includes a plurality of unit laminates, each comprising a body with a stacked structure including a plurality of internal electrodes and connection electrodes that extend in a stacking direction of the body and electrically connect to the plurality of internal electrodes, and pad portions between adjacent unit laminates to electrically connect the respective connection electrodes of the unit laminates above and below the pad portions to each other.
Abstract:
A capacitor includes a body including a plurality of dielectric layers, first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween, and first and second insulating regions. The first insulating region is disposed in each of the first internal electrodes and includes a first connection electrode disposed therein. The second insulating region is disposed in each of the second internal electrodes and includes a second connection electrode disposed therein. The products D1×Td and D2×Td are greater than 20 μm2, where Td is a thickness of the dielectric layer, and D1 and D2 are widths of the first and second insulating regions, respectively.
Abstract:
A feedback circuit includes a detection voltage regulating unit outputting a regulation voltage by comparing a detection voltage associated with a current flowing in a light emitting diode channel with a reference voltage, a path forming unit forming a current path depending on the regulation voltage, and a feedback signal generating unit generating a feedback signal depending on a current flowing in the current path.
Abstract:
A capacitor component includes a plurality of unit laminates, each comprising a body with a stacked structure including a plurality of internal electrodes and connection electrodes that extend in a stacking direction of the body and electrically connect to the plurality of internal electrodes, and pad portions between adjacent unit laminates to electrically connect the respective connection electrodes of the unit laminates above and below the pad portions to each other.
Abstract:
A multilayer capacitor includes a body including dielectric layers, and first and second internal electrodes alternately disposed with respective dielectric layers interposed therebetween, first and second groove parts formed in external surfaces of the body in a first direction in which the dielectric layers are stacked, having at least one corner, and contacting the first and second internal electrodes, respectively, and first and second connection electrodes disposed in the first and second groove parts, respectively, and electrically connected to the first and second internal electrodes, respectively.
Abstract:
A capacitor component includes a body, a plurality of internal electrodes disposed in the body, connection electrodes extended in a thickness direction of the body and electrically connected to the plurality of internal electrodes, upper electrodes disposed on an upper surface of the body and electrically connected to the connection electrodes, and lower electrodes disposed on a lower surface of the body and electrically connected to the connection electrodes A thickness of the upper electrodes is different from that of the lower electrodes, and an area of contact between the upper electrodes and the body is different from an area of contact between the lower electrodes and the body.
Abstract:
A power supply apparatus may include a conversion unit converting an input voltage, an output unit stabilizing a voltage output by the conversion unit and outputting the voltage, and an overcurrent detecting unit detecting the occurrence of an overcurrent state by sensing a ripple current flowing in the output unit.
Abstract:
There are provided an alternating current (AC) detection circuit and an operating method thereof. The AC detection circuit includes: a power supply unit outputting an AC signal; a filter unit connected to the power supply unit to block a serial signal component; and a detection circuit unit including at least one switching element turned on or turned off according to an output signal from the filter unit, and detecting whether the AC input signal has been input according to an operation of the at least one switching element.