Abstract:
Provided is an image processing device configured to compress first image data. The image processing device includes an encoding circuit configured to compress the first image data into second image data including prediction data and residual data, compress the second image data into third image data by performing entropy encoding on the second image data, generate a header representing a compression ratio of the third image data, and store the third image data along with the header in a memory device as compressed first image data.
Abstract:
IN a system on chip (SoC) for adaptively adjusting a bit rate, the SoC includes a central processing unit (CPU) configured to compare a first reference bit rate with a bit rate of a previous frame and to output a first parameter, a spatial filter configured to adjust a cutoff frequency using the first parameter, to filter high-frequency components from a current frame using an adjusted cutoff frequency and to output a filtered current frame, and a video codec configured to adjust a bit rate of a current macroblock in the filtered current frame using a second parameter generated according to a result of comparing a second reference bit rate with a bit rate of a previous macroblock in the filtered current frame.
Abstract:
An image processing device includes a frame buffer compressor, which is configured to: (i) compress source data into compressed data having CRC bits appended thereto, and (ii) decompress the compressed data into output data and use the CRC bits to check for errors in the output data. A multimedia device is provided, which is configured to generate the source data in response to raw data. A memory device is provided, which is configured to store the compressed data. The frame buffer compressor may include an encoder configured to compress the source data into the compressed data with the CRC bits appended thereto, and a decoder configured to decompress the compressed data into the output data. The encoder may include a prediction module, which is configured to generate prediction data including reference data and residual data, from the source data.
Abstract:
A video decoding apparatus, a computing system including the same, and a video decoding method. The video decoding apparatus may include an entropy decoder and a video decoder. The entropy decoder may be configured to obtain encoding information of a bitstream of an encoded video from a header of the bitstream, the encoding information of the bitstream including a bit depth of the bitstream, and convert a first quantization parameter of the bitstream into a second quantization parameter when the bit depth of the bitstream is different from a reference bit depth. The video decoder may be configured to decode the bitstream based on the second quantization parameter.
Abstract:
A decoder includes a parser, an intra predictor, and an inter predictor. The parser parses a bit stream to extract header information and first through third data information, to determine a prediction mode for blocks in a current frame based on the header information, and to selectively output the first and second data information based on the prediction mode. The intra predictor generates a predicted value of a pixel of a current block based on a pixel value of a first reference block in the current frame based on the first data information. The inter predictor predicts a second reference block from a reference frame based on the second data information, converts a pixel value of the second reference block, and generates a predicted value of the pixel of the current block based on a converted pixel value.
Abstract:
A system on chip includes a video codec configured to output syntax information and data information, which correspond to each of a plurality of blocks included in each frame of image data, based upon a result of encoding or decoding the image data. A map generator is configured to determine whether each of the blocks is an update block based upon the syntax information and to generate a mapping table based upon a determination result. A display controller is configured to output the mapping table and data information corresponding to the update block to a display device.
Abstract:
A method of individually setting the quantization parameter for each coding unit of a frame in high efficiency video coding (HEVC) is disclosed. The method for setting a quantization parameter for each coding unit in a frame for HEVC encoding includes receiving at least one of partition size information of the coding unit and prediction mode information of the coding unit, performing an adaptive bit allocation operation per each coding unit based on at least one of the unit partition size information of the coding unit and the prediction mode information of the coding unit, and setting a quantization parameter per each coding unit according to the performed adaptive bit allocation operation.
Abstract:
Provided is an image processing device configured to compress first image data. The image processing device includes an encoding circuit configured to compress the first image data into second image data including prediction data and residual data, compress the second image data into third image data by performing entropy encoding on the second image data, generate a header representing a compression ratio of the third image data, and store the third image data along with the header in a memory device as compressed first image data.
Abstract:
An image processing device includes a frame buffer compressor, which is configured to: (i) compress source data into compressed data having CRC bits appended thereto, and (ii) decompress the compressed data into output data and use the CRC bits to check for errors in the output data. A multimedia device is provided, which is configured to generate the source data in response to raw data. A memory device is provided, which is configured to store the compressed data. The frame buffer compressor may include an encoder configured to compress the source data into the compressed data with the CRC bits appended thereto, and a decoder configured to decompress the compressed data into the output data. The encoder may include a prediction module, which is configured to generate prediction data including reference data and residual data, from the source data.
Abstract:
IN a system on chip (SoC) for adaptively adjusting a bit rate, the SoC includes a central processing unit (CPU) configured to compare a first reference bit rate with a bit rate of a previous frame and to output a first parameter, a spatial filter configured to adjust a cutoff frequency using the first parameter, to filter high-frequency components from a current frame using an adjusted cutoff frequency and to output a filtered current frame, and a video codec configured to adjust a bit rate of a current macroblock in the filtered current frame using a second parameter generated according to a result of comparing a second reference bit rate with a bit rate of a previous macroblock in the filtered current frame.