Abstract:
Methods for manufacturing a semiconductor device having a dual gate dielectric layer may include providing a substrate including first and second regions, forming a first gate dielectric layer having a first thickness on the substrate, forming an interlayer insulating layer including first and second trenches exposing the first gate dielectric layer in the first and second regions, forming a sacrificial layer on the interlayer insulating layer and bottoms of the first and second trenches, forming a sacrificial pattern exposing the first gate dielectric layer of the bottom of the first trench, removing the first gate dielectric layer of the bottom of the first trench, forming a second gate dielectric layer having a second thickness on the bottom of the first trench, removing the sacrificial pattern, and forming a gate electrode on each of the first and second gate dielectric layers.
Abstract:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
Abstract:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
Abstract:
A semiconductor device includes an active pattern provided on a substrate, a source/drain pattern provided on the active pattern, a channel pattern configured to be connected to the source/drain pattern, a gate electrode configured to be extended in a first direction and to cross the channel pattern, and a first spacer provided on a side surface of the gate electrode. The first spacer includes a fence portion provided on a side surface of the active pattern and below the source/drain pattern. The source/drain pattern includes a body portion and a neck portion between the body portion and the active pattern. The body portion includes a crystalline surface configured to be slantingly extended from the neck portion. The crystalline surface is configured to be spaced apart from an uppermost portion of the fence portion.
Abstract:
Semiconductor devices may include a substrate, gate electrodes on the substrate, and source/drain regions at both sides of each of the gate electrodes. Each of the gate electrodes may include a gate insulating pattern on the substrate, a lower work-function electrode pattern that is on the gate insulating pattern and has a recessed upper surface, and an upper work-function electrode pattern that conformally extends on the recessed upper surface of the lower work function electrode pattern. Topmost surfaces of the lower work-function electrode patterns may be disposed at an equal level, and the upper work-function electrode patterns may have different thicknesses from each other.
Abstract:
Methods for manufacturing a semiconductor device having a dual gate dielectric layer may include providing a substrate including first and second regions, forming a first gate dielectric layer having a first thickness on the substrate, forming an interlayer insulating layer including first and second trenches exposing the first gate dielectric layer in the first and second regions, forming a sacrificial layer on the interlayer insulating layer and bottoms of the first and second trenches, forming a sacrificial pattern exposing the first gate dielectric layer of the bottom of the first trench, removing the first gate dielectric layer of the bottom of the first trench, forming a second gate dielectric layer having a second thickness on the bottom of the first trench, removing the sacrificial pattern, and forming a gate electrode on each of the first and second gate dielectric layers.