Abstract:
A semiconductor device is manufactured using dual metal silicide layers. The semiconductor device includes a substrate having first and second regions, a first metal gate electrode on the substrate in the first region, a second metal gate electrode on the substrate in the second region, a first epitaxial layer on and in the substrate at both sides of the first metal gate electrode, a second epitaxial layer on and in the substrate at both sides of the second metal gate electrode, a first metal silicide layer on the first epitaxial layer, a second metal silicide layer on the second epitaxial layer, an interlayer dielectric layer on the first and second metal silicide layers, contact plugs passing through the interlayer dielectric layer and electrically connected to the first and second metal silicide layers.
Abstract:
A chemical supplier includes a chemical reservoir containing a chemical mixture at a room temperature, an inner space of the chemical reservoir being separated from surroundings, a supply line through which the chemical mixture is supplied to a process chamber from the chemical reservoir, an inline heater positioned on the supply line and heating the chemical mixture in the supply line to a process temperature, and a power source driving the chemical mixture to move the chemical mixture toward the process chamber.
Abstract:
Semiconductor devices including a dummy gate structure on a fin are provided. A semiconductor device includes a fin protruding from a substrate. The semiconductor device includes a source/drain region in the fin, and a recess region of the fin that is between first and second portions of the source/drain region. Moreover, the semiconductor device includes a dummy gate structure overlapping the recess region, and a spacer that is on the fin and adjacent a sidewall of the dummy gate structure.
Abstract:
Semiconductor devices including a dummy gate structure on a fin are provided. A semiconductor device includes a fin protruding from a substrate. The semiconductor device includes a source/drain region in the fin, and a recess region of the fin that is between first and second portions of the source/drain region. Moreover, the semiconductor device includes a dummy gate structure overlapping the recess region, and a spacer that is on the fin and adjacent a sidewall of the dummy gate structure.
Abstract:
Semiconductor devices including a dummy gate structure on a fin are provided. A semiconductor device includes a fin protruding from a substrate. The semiconductor device includes a source/drain region in the fin, and a recess region of the fin that is between first and second portions of the source/drain region. Moreover, the semiconductor device includes a dummy gate structure overlapping the recess region, and a spacer that is on the fin and adjacent a sidewall of the dummy gate structure.
Abstract:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
Abstract:
A semiconductor device is manufactured using dual metal silicide layers. The semiconductor device includes a substrate having first and second regions, a first metal gate electrode on the substrate in the first region, a second metal gate electrode on the substrate in the second region, a first epitaxial layer on and in the substrate at both sides of the first metal gate electrode, a second epitaxial layer on and in the substrate at both sides of the second metal gate electrode, a first metal silicide layer on the first epitaxial layer, a second metal silicide layer on the second epitaxial layer, an interlayer dielectric layer on the first and second metal silicide layers, contact plugs passing through the interlayer dielectric layer and electrically connected to the first and second metal silicide layers.
Abstract:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
Abstract:
Semiconductor devices including a dummy gate structure on a fin are provided. A semiconductor device includes a fin protruding from a substrate. The semiconductor device includes a source/drain region in the fin, and a recess region of the fin that is between first and second portions of the source/drain region. Moreover, the semiconductor device includes a dummy gate structure overlapping the recess region, and a spacer that is on the fin and adjacent a sidewall of the dummy gate structure.
Abstract:
Semiconductor devices including a dummy gate structure on a fin are provided. A semiconductor device includes a fin protruding from a substrate. The semiconductor device includes a source/drain region in the fin, and a recess region of the fin that is between first and second portions of the source/drain region. Moreover, the semiconductor device includes a dummy gate structure overlapping the recess region, and a spacer that is on the fin and adjacent a sidewall of the dummy gate structure.