Abstract:
A color filter is disposed on a substrate. An organic photodiode is disposed on the color filter. The organic photodiode includes an electrode insulating layer having a recess region on the substrate, a first electrode on the color filter, the first electrode filling the recess region of the electrode insulating layer, a second electrode on the first electrode, and an organic photoelectric conversion layer interposed between the first electrode and the second electrode. The first electrode includes a seam extending at a first angle from a side surface of the recess region of the electrode insulating layer.
Abstract:
A pixel of a distance sensor includes a photosensor that generates photocharges corresponding to light incident in a first direction. The photosensor includes a plurality of first layers having a cross-sectional area increasing along the first direction after a first depth and at least one transfer gate which receives a transfer control signal for transferring the photocharges to a floating diffusion node. A strong electric field is formed in the direction in which the photocharges move horizontally or vertically in the pixel, thereby accelerating the photocharges, allowing for increased sensitivity and demodulation contrast.
Abstract:
An image sensor may include a substrate having a first surface and a second surface on opposite sides, a first transistor having a first gate disposed on the first surface, a photoelectric conversion layer which generates photocharges from light incident in a first direction, a second transistor having a transistor structure disposed between the first surface and the photoelectric conversion layer and spaced from the photoelectric conversion layer, and includes a semiconductor layer composed of a metal oxide semiconductor material. The semiconductor layer may have a third surface facing the first direction and a fourth surface opposite the third surface, with a second gate disposed on the semiconductor layer. The semiconductor layer may be connected to the first gate. A light blocking layer may be disposed between the third surface and the photoelectric conversion layer, and spaced from the photoelectric conversion layer.
Abstract:
A combination sensor may include a first infrared light sensor and a second infrared light sensor. The first infrared light sensor may be configured to sense light in a first wavelength within an infrared wavelength spectrum. The second infrared light sensor may be configured to sense light in a second wavelength that is different from the first wavelength within the infrared wavelength spectrum. The first infrared light sensor and the second infrared light sensor may be stacked in relation to each other.
Abstract:
A color filter is disposed on a substrate. An organic photodiode is disposed on the color filter. The organic photodiode includes an electrode insulating layer having a recess region on the substrate, a first electrode on the color filter, the first electrode filling the recess region of the electrode insulating layer, a second electrode on the first electrode, and an organic photoelectric conversion layer interposed between the first electrode and the second electrode. The first electrode includes a seam extending at a first angle from a side surface of the recess region of the electrode insulating layer.
Abstract:
A combination sensor may include a first infrared light sensor and a second infrared light sensor. The first infrared light sensor may be configured to sense light in a first wavelength within an infrared wavelength spectrum. The second infrared light sensor may be configured to sense light in a second wavelength that is different from the first wavelength within the infrared wavelength spectrum. The first infrared light sensor and the second infrared light sensor may be stacked in relation to each other.
Abstract:
A pixel of a distance sensor includes a photosensor that generates photocharges corresponding to light incident in a first direction. The photosensor includes a plurality of first layers having a cross-sectional area increasing along the first direction after a first depth and at least one transfer gate which receives a transfer control signal for transferring the photocharges to a floating diffusion node. A strong electric field is formed in the direction in which the photocharges move horizontally or vertically in the pixel, thereby accelerating the photocharges, allowing for increased sensitivity and demodulation contrast.
Abstract:
An operation method of an image sensor includes determining a distance between the image sensor and an object, and activating at least one of a color pixel, a depth pixel and a thermal pixel included in a pixel array of the image sensor based on a determined distance and a reference distance.
Abstract:
A color filter is disposed on a substrate. An organic photodiode is disposed on the color filter. The organic photodiode includes an electrode insulating layer having a recess region on the substrate, a first electrode on the color filter, the first electrode filling the recess region of the electrode insulating layer, a second electrode on the first electrode, and an organic photoelectric conversion layer interposed between the first electrode and the second electrode. The first electrode includes a seam extending at a first angle from a side surface of the recess region of the electrode insulating layer.
Abstract:
An image sensor includes a first organic photoelectric conversion layer on a base layer, a floating diffusion region in the base layer, a first storage node including a first electrode layer, which is configured to receive a bias signal, a first portion of a first semiconductor layer which includes a semiconductor material, and a first portion of a first dielectric layer. The first dielectric layer extends between the first electrode layer and the first semiconductor layer. The first storage node is electrically connected to the first organic photoelectric conversion layer. The image sensor includes a first transfer transistor including the first dielectric layer, the first semiconductor layer, and a first transfer gate electrode which is configured to receive first transfer control signal. The first transfer transistor has a first end electrically connected to the first storage node and a second end electrically connected to the floating diffusion region.